Question #213693

Solve the equations by the use of the operator D







D²y -6Dy +9y= e^3x + e^-3x



1
Expert's answer
2021-07-27T15:04:02-0400

D2y6Dy+9y=e3x+e3xD^2y-6Dy+9y=e^{3x}+e^{-3x}

For yn

(D26D+9)y=0m26m+9=0(D^2-6D+9)y=0\\m^2-6m+9=0


    (m3)2=0    m=3,3\implies(m-3)^2=0\\\implies m=3,3


yn=1D26D+9(e3x+e3x)\\yn=\frac{1}{D^2-6D+9}(e^{3x}+e^{-3x})


=e3xD26D+9+e3xD26D+9\\=\frac{e^{3x}}{D^2-6D+9}+\frac{e^{-3x}}{D^2-6D+9}


=xe3x2D6+e3x36=\frac{xe^{3x}}{2D-6}+\frac{e^{-3x}}{36}


So solution is y(x)=yn+ypy(x)=y_n+y_p


    y(x)=ae3x+c2xe3x+x2e3x2+e3x36\implies y(x)=ae^{3x}+c_2xe^{3x}+\frac{x^2e^{3x}}{2}+\frac{e^{-3x}}{36}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS