Solve the equations by the use of the operator D
D²y -6Dy +9y= e^3x + e^-3x
D2y−6Dy+9y=e3x+e−3xD^2y-6Dy+9y=e^{3x}+e^{-3x}D2y−6Dy+9y=e3x+e−3x
For yn
(D2−6D+9)y=0m2−6m+9=0(D^2-6D+9)y=0\\m^2-6m+9=0(D2−6D+9)y=0m2−6m+9=0
⟹ (m−3)2=0 ⟹ m=3,3\implies(m-3)^2=0\\\implies m=3,3⟹(m−3)2=0⟹m=3,3
yn=1D2−6D+9(e3x+e−3x)\\yn=\frac{1}{D^2-6D+9}(e^{3x}+e^{-3x})yn=D2−6D+91(e3x+e−3x)
=e3xD2−6D+9+e−3xD2−6D+9\\=\frac{e^{3x}}{D^2-6D+9}+\frac{e^{-3x}}{D^2-6D+9}=D2−6D+9e3x+D2−6D+9e−3x
=xe3x2D−6+e−3x36=\frac{xe^{3x}}{2D-6}+\frac{e^{-3x}}{36}=2D−6xe3x+36e−3x
So solution is y(x)=yn+ypy(x)=y_n+y_py(x)=yn+yp
⟹ y(x)=ae3x+c2xe3x+x2e3x2+e−3x36\implies y(x)=ae^{3x}+c_2xe^{3x}+\frac{x^2e^{3x}}{2}+\frac{e^{-3x}}{36}⟹y(x)=ae3x+c2xe3x+2x2e3x+36e−3x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments