Let us solve the differential equation y′′+4y=tg(2x). The characteristic equation k2+4=0 of the homogeneous differential equation has the solutions k1=2i,k2=−2i. The solution of the homogeneous equation is y=C1cos2x+C2sin2x. Let us use the method of variation of parameters. We will find the solution of the differential equation in the form: y=C1(x)cos2x+C2(x)sin2x. For this we should to solve the following system:
{C1′(x)cos2x+C2′(x)sin2x=0−2C1′(x)sin2x+2C2′(x)cos2x=tg2x
{C1′(x)=−C2′(x)tg2x2C2′(x)tg2xsin2x+2C2′(x)cos2x=tg2x
{C1′(x)=−C2′(x)tg2x2C2′(x)(cos2xsin22x+cos2x)=tg2x
{C1′(x)=−C2′(x)tg2x2C2′(x)(cos2xsin22x+cos22x)=tg2x
{C1′(x)=−C2′(x)tg2x2C2′(x)(cos2x1)=tg2x
{C1′(x)=−C2′(x)tg2xC2′(x)=21sin2x
{C1′(x)=−21cos2xsin22xC2′(x)=21sin2x
It follows that C2(x)=−41cos2x+C2 and C1(x)=−21∫cos2xsin22xdx=−41∫cos22xsin22xd(sin2x)=41∫sin22x−1sin22x−1+1d(sin2x)=41∫d(sin2x)+41∫sin22x−11d(sin2x)=41sin2x+81∫(sin2x−11−sin2x+11)d(sin2x)=41sin2x+81(ln∣sin2x−1∣−ln∣sin2x+1∣)+C1=41sin2x+81ln∣sin2x+1sin2x−1∣+C1
We conclude that the general solution is
y=(41sin2x+81ln∣sin2x+1sin2x−1∣+C1)cos2x+(−41cos2x+C2)sin2x.
Comments