Question #213506

Y"+4y=tg(2x)


1
Expert's answer
2021-07-16T01:50:10-0400

Let us solve the differential equation y+4y=tg(2x).y''+4y=\tg(2x). The characteristic equation k2+4=0k^2+4=0 of the homogeneous differential equation has the solutions k1=2i,k2=2i.k_1=2i,k_2=-2i. The solution of the homogeneous equation is y=C1cos2x+C2sin2x.y=C_1\cos 2x+C_2\sin 2x. Let us use the method of variation of parameters. We will find the solution of the differential equation in the form: y=C1(x)cos2x+C2(x)sin2x.y=C_1(x)\cos 2x+C_2(x)\sin 2x. For this we should to solve the following system:


{C1(x)cos2x+C2(x)sin2x=02C1(x)sin2x+2C2(x)cos2x=tg2x\begin{cases}C_1'(x)\cos 2x+C_2'(x)\sin 2x=0\\-2C_1'(x)\sin 2x+2C_2'(x)\cos 2x=\tg 2x\end{cases}


{C1(x)=C2(x)tg2x2C2(x)tg2xsin2x+2C2(x)cos2x=tg2x\begin{cases}C_1'(x)=-C_2'(x)\tg 2x\\2C_2'(x)\tg 2x\sin 2x+2C_2'(x)\cos 2x=\tg 2x\end{cases}


{C1(x)=C2(x)tg2x2C2(x)(sin22xcos2x+cos2x)=tg2x\begin{cases}C_1'(x)=-C_2'(x)\tg 2x\\2C_2'(x)(\frac{\sin^2 2x}{\cos 2x}+\cos 2x)=\tg 2x\end{cases}


{C1(x)=C2(x)tg2x2C2(x)(sin22x+cos22xcos2x)=tg2x\begin{cases}C_1'(x)=-C_2'(x)\tg 2x\\2C_2'(x)(\frac{\sin^2 2x+\cos^22x}{\cos 2x})=\tg 2x\end{cases}


{C1(x)=C2(x)tg2x2C2(x)(1cos2x)=tg2x\begin{cases}C_1'(x)=-C_2'(x)\tg 2x\\2C_2'(x)(\frac{1}{\cos 2x})=\tg 2x\end{cases}


{C1(x)=C2(x)tg2xC2(x)=12sin2x\begin{cases}C_1'(x)=-C_2'(x)\tg 2x\\C_2'(x)=\frac{1}{2}\sin 2x\end{cases}


{C1(x)=12sin22xcos2xC2(x)=12sin2x\begin{cases}C_1'(x)=-\frac{1}{2}\frac{\sin^2 2x}{\cos 2x}\\C_2'(x)=\frac{1}{2}\sin 2x\end{cases}


It follows that C2(x)=14cos2x+C2C_2(x)=-\frac{1}{4}\cos 2x+C_2 and C1(x)=12sin22xcos2xdx=14sin22xcos22xd(sin2x)=14sin22x1+1sin22x1d(sin2x)=14d(sin2x)+141sin22x1d(sin2x)=14sin2x+18(1sin2x11sin2x+1)d(sin2x)=14sin2x+18(lnsin2x1lnsin2x+1)+C1=14sin2x+18lnsin2x1sin2x+1+C1C_1(x)=-\frac{1}{2}\int\frac{\sin^2 2x}{\cos 2x}dx=-\frac{1}{4}\int\frac{\sin^2 2x}{\cos^2 2x}d(\sin 2x) =\frac{1}{4}\int\frac{\sin^2 2x-1+1}{\sin^2 2x-1}d(\sin 2x)= \frac{1}{4}\int d(\sin 2x)+\frac{1}{4}\int\frac{1}{\sin^2 2x-1}d(\sin 2x)= \frac{1}{4}\sin 2x+\frac{1}{8}\int(\frac{1}{\sin2x-1}-\frac{1}{\sin2x+1})d(\sin 2x)= \frac{1}{4}\sin 2x+\frac{1}{8}(\ln|\sin2x-1|-\ln|\sin2x+1|)+C_1= \frac{1}{4}\sin 2x+\frac{1}{8}\ln|\frac{\sin2x-1}{\sin2x+1}|+C_1


We conclude that the general solution is


y=(14sin2x+18lnsin2x1sin2x+1+C1)cos2x+(14cos2x+C2)sin2x.y=(\frac{1}{4}\sin 2x+\frac{1}{8}\ln|\frac{\sin2x-1}{\sin2x+1}|+C_1)\cos 2x+(-\frac{1}{4}\cos 2x+C_2)\sin 2x.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS