Part 1
Part 2
y′+f(x)y=g(x) as I(x)=e∫f(x)dx
Given that the yield y(t) of a corn crop satisfies the equation dtdy=100+e−t−y
dtdy=100+e−t−ydtdy+y=100+e−t
Calculating the integrating factor
I(t)=e∫f(t)dt=et
Multiplying both sides
etdtdy+yet=100e−t+1(ety)′=100et+1∫(ety)′dt=∫(100et+1)ety=∫100etdt+∫1dtety=100et+t+Cy=100+te−t+Ce−t0=100+0∗e0+Ce0C=−100y=100+te−t−100e−t
Comments