Question #211671

In the following problem use a suitable substitution to reduce the order of the given DE and then solve it


  1. y''=2y'
  2. y''+eyy'2=0
  3. y"+(1-1/y)y'2=0
1
Expert's answer
2021-06-30T12:34:56-0400
  1. y''=2y'

Substitution: y=p(y)y=pdpdyy' = p(y) \Rightarrow y'' = p\frac{{dp}}{{dy}}

Then

pdpdy=2pdpdy=2dp=2dyp=2y+2C1dydx=2y+2C1dyy+C1=2dxlny+C1=2x2C22x=lny+C1+2C2x=12lny+C1+C2p\frac{{dp}}{{dy}} = 2p \Rightarrow \frac{{dp}}{{dy}} = 2 \Rightarrow dp = 2dy \Rightarrow p = 2y + 2{C_1} \Rightarrow \frac{{dy}}{{dx}} = 2y + 2{C_1} \Rightarrow \frac{{dy}}{{y + {C_1}}} = 2dx \Rightarrow \ln |y + {C_1}| = 2x - 2{C_2} \Rightarrow 2x = \ln |y + {C_1}| + 2{C_2} \Rightarrow x = \frac{1}{2}\ln |y + {C_1}| + {C_2}

Answer: x=12lny+C1+C2x = \frac{1}{2}\ln |y + {C_1}| + {C_2}

2.. y''+eyy'2=0

Substitution: y=p(y)y=pdpdyy' = p(y) \Rightarrow y'' = p\frac{{dp}}{{dy}}

Then

pdpdy+eyp2=0pdpdy=eyp2dpdy=eypdpp=eydylnp=ey+Cp=eey+Cy=C1eey,C1=eCdydx=C1eey1C1eeydy=dxx=1C1eeydy+C2x=1C1Ei(ey)+C2p\frac{{dp}}{{dy}} + {e^y}{p^2} = 0 \Rightarrow p\frac{{dp}}{{dy}} = - {e^y}{p^2} \Rightarrow \frac{{dp}}{{dy}} = - {e^y}p \Rightarrow \frac{{dp}}{p} = - {e^y}dy \Rightarrow \ln p = - {e^y} + C \Rightarrow p = {e^{ - {e^y} + C}} \Rightarrow y' = {C_1}{e^{ - {e^y}}},\,\,{C_1} = {e^C} \Rightarrow \frac{{dy}}{{dx}} = {C_1}{e^{ - {e^y}}} \Rightarrow \frac{1}{{{C_1}}}{e^{{e^y}}}dy = dx \Rightarrow x = \frac{1}{{{C_1}}}\int {{e^{{e^y}}}dy} + {C_2} \Rightarrow x = \frac{1}{{{C_1}}}Ei({e^y}) + {C_2}

Answer: x=1C1Ei(ey)+C2x = \frac{1}{{{C_1}}}Ei({e^y}) + {C_2}

3.. y"+(1-1/y)y'2=0

Substitution: y=p(y)y=pdpdyy' = p(y) \Rightarrow y'' = p\frac{{dp}}{{dy}}

Then

pdpdy+(11y)p2=0pdpdy=(11y)p2dpdy=(1y1)pdpp=(1y1)dylnp=lnyy+Cp=elnyy+Cp=C1elnyey,C1=eCy=C1yeydydx=C1yey1C1eydyy=dxx=1C1eydyy+C2x=1C1Ei(y)+C2p\frac{{dp}}{{dy}} + \left( {1 - \frac{1}{y}} \right){p^2} = 0 \Rightarrow p\frac{{dp}}{{dy}} = - \left( {1 - \frac{1}{y}} \right){p^2} \Rightarrow \frac{{dp}}{{dy}} = \left( {\frac{1}{y} - 1} \right)p \Rightarrow \frac{{dp}}{p} = \left( {\frac{1}{y} - 1} \right)dy \Rightarrow \ln p = \ln y - y + C \Rightarrow p = {e^{\ln y - y + C}} \Rightarrow p = {C_1}{e^{\ln y}}{e^{ - y}},\,\,{C_1} = {e^C} \Rightarrow y' = {C_1}y{e^{ - y}} \Rightarrow \frac{{dy}}{{dx}} = {C_1}y{e^{ - y}} \Rightarrow \frac{1}{{{C_1}}}\frac{{{e^y}dy}}{y} = dx \Rightarrow x = \frac{1}{{{C_1}}}\int {\frac{{{e^y}dy}}{y}} + {C_2} \Rightarrow x = \frac{1}{{{C_1}}}Ei(y) + {C_2}

Answer: x=1C1Ei(y)+C2x = \frac{1}{{{C_1}}}Ei(y) + {C_2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS