- y''=2y'
Substitution: y′=p(y)⇒y′′=pdydp
Then
pdydp=2p⇒dydp=2⇒dp=2dy⇒p=2y+2C1⇒dxdy=2y+2C1⇒y+C1dy=2dx⇒ln∣y+C1∣=2x−2C2⇒2x=ln∣y+C1∣+2C2⇒x=21ln∣y+C1∣+C2
Answer: x=21ln∣y+C1∣+C2
2.. y''+eyy'2=0
Substitution: y′=p(y)⇒y′′=pdydp
Then
pdydp+eyp2=0⇒pdydp=−eyp2⇒dydp=−eyp⇒pdp=−eydy⇒lnp=−ey+C⇒p=e−ey+C⇒y′=C1e−ey,C1=eC⇒dxdy=C1e−ey⇒C11eeydy=dx⇒x=C11∫eeydy+C2⇒x=C11Ei(ey)+C2
Answer: x=C11Ei(ey)+C2
3.. y"+(1-1/y)y'2=0
Substitution: y′=p(y)⇒y′′=pdydp
Then
pdydp+(1−y1)p2=0⇒pdydp=−(1−y1)p2⇒dydp=(y1−1)p⇒pdp=(y1−1)dy⇒lnp=lny−y+C⇒p=elny−y+C⇒p=C1elnye−y,C1=eC⇒y′=C1ye−y⇒dxdy=C1ye−y⇒C11yeydy=dx⇒x=C11∫yeydy+C2⇒x=C11Ei(y)+C2
Answer: x=C11Ei(y)+C2
Comments