Question #211496

Solve x2p+y2q=(x+y)z


1
Expert's answer
2021-07-07T05:31:35-0400

Question

Solve x^2p +y^2q=(x+y)z

Solution

x2dzdx\frac {dz}{dx} +y2dzdy\frac {dz}{dy} =(x+y)z

Characteristic equation will be

dxx2\frac {dx} {x^2}=dyy2\frac {dy} {y^2} =dz(x+y)z\frac {dz} {(x+y)z}

dxx2\int\frac {dx} {x^2} =dyy2\int\frac {dy} {y^2}

1x-\frac 1 x =1y-\frac 1 y +C1

C1=xyxy\frac {x-y} {xy}

y=xCx+1\frac {x}{Cx +1}

The characteristics equation can then be written as;

dxx2=dz(x+y)z\frac {dx} {x^2} =\frac {dz}{(x+y)z} =dz(x+xC1x+1)z\cfrac {dz} {(x + \cfrac {x} {C_1x +1})z}

C1x2+2xx2(C1x+1)\frac { C_1x^2 +2x}{x^2(C_1x +1)}dx =C1x+2x(C1x+1)\frac {C_1x +2} {x (C_1x+1)} =dzz\frac {dz} z

C1x+2x(C1x+1)\int\frac {C_1x+2}{x (C_1x+1)}dx=dzz\int\frac {dz} z

But

C1x+2x(C1x+1)=1x+1x(C1x+1)\frac {C_1x +2}{x (C_1x+1)}=\frac 1 x +\frac {1}{x(C_1x+1)}

However,

1x(C1x+1)\frac {1} {x (C_1x+1)} =Ax\frac A x +BC1x+1\frac {B}{C_1x+1}

A(C1x+1)+Bx=1

Therefore,

A=1 and B=-C1

1x(C1x+1)\frac {1}{x (C_1x+1)} =1x\frac 1 x +C1C1x+1\frac {-C_1}{C_1x+1}

\int C1x+2x(C1x+1)\frac {C_1x+2}{x (C_1x+1)} =\int 2x\frac 2 x -\int C1C1x+1\frac {C_1}{C_1x+1} =dzz\int\frac{dz}{z}

2ln|x| -C1ln|C1x+1|=ln|z|+ln|C2|

C2=x2z(C1x+1)\frac {x^2}{z(C_1x+1)} =x2z(1+xyy)\frac {x^2}{z(1+\frac {x-y}{y})} =yx2zx\frac {yx^2}{zx} =xyz\frac {xy }{z}

Answer;

F(xyxy\frac {x-y}{xy},xyz\frac {xy} z)=0





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Wavie
08.07.21, 07:39

Well explained

LATEST TUTORIALS
APPROVED BY CLIENTS