Question #211132

how to solve this x2y''-xy'+y=2x by variation of parameter


1
Expert's answer
2021-06-28T16:40:46-0400

This equation is euler-cauchy equation.

Substitute y=xmy=x^{m} into the homogenous equation.


y=mxm1y'=mx^{m-1}

y=m(m1)xm2y''=m(m-1)x^{m-2}

x2(m(m1)xm2)x(mxm1)+xm=0x^2(m(m-1)x^{m-2})-x(mx^{m-1})+x^m=0

xm(m2mm+1)=0x^m(m^2-m-m+1)=0

xm(m1)2=0x^m(m-1)^2=0

m=1m=1

Hence the solution of the homogenous equation is


y=c1x+c2xlnxy=c_1x+c_2x\ln x

Use method of variations of parameters c1=c1(x),c2=c2(x)c_1=c_1(x), c_2=c_2(x) 


y=c1+c1x+c2lnx+c2+c2xlnxy'=c_1+c_1'x+c_2\ln x+c_2+c_2'x\ln x

Suppose

c1x+c2xlnx=0c_1'x+c_2'x\ln x=0

Then


y=c1+c2lnx+c2y'=c_1+c_2\ln x+c_2

y=c1+c21x+c2lnx+c2y''=c_1'+c_2\dfrac{1}{x}+c_2'\ln x+c_2'

x2c1+xc2+x2c2lnx+x2c2xc1xc2lnxx^2c_1'+xc_2+x^2c_2'\ln x+x^2c_2'-xc_1-xc_2\ln x

xc2+c1x+c2xlnx=2x-xc_2+c_1x+c_2x\ln x=2x

We have the system


c1x+c2xlnx=0c_1'x+c_2'x\ln x=0


x2c1+x2c2lnx+x2c2=2xx^2c_1'+x^2c_2'\ln x+x^2c_2'=2x

Then


c1=c2lnxc_1'=-c_2'\ln x

x2c2lnx+x2c2lnx+x2c2=2x-x^2c_2'\ln x+x^2c_2'\ln x+x^2c_2'=2x



c1=c2lnxc_1'=-c_2'\ln x

c2x=2c_2'x=2

c2=2dxxc_2=\int\dfrac{2dx}{x}

c1=2lnxdxxc_1=-\int\dfrac{2\ln xdx}{x}

c1=ln2(x)+C3c_1=-\ln^2(x)+C_3

c2=2ln(x)+C4c_2=2\ln(x)+C_4


y=xln2(x)+C3x+2xln2(x)+C4xln(x)y=-x\ln^2(x)+C_3x+2x\ln^2(x)+C_4x\ln(x)

y=xln2(x)+C3x+C4xln(x)y=x\ln^2(x)+C_3x+C_4x\ln(x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS