This equation is euler-cauchy equation.
Substitute y=xm into the homogenous equation.
y′=mxm−1
y′′=m(m−1)xm−2
x2(m(m−1)xm−2)−x(mxm−1)+xm=0
xm(m2−m−m+1)=0
xm(m−1)2=0
m=1 Hence the solution of the homogenous equation is
y=c1x+c2xlnxUse method of variations of parameters c1=c1(x),c2=c2(x)
y′=c1+c1′x+c2lnx+c2+c2′xlnx Suppose
c1′x+c2′xlnx=0 Then
y′=c1+c2lnx+c2
y′′=c1′+c2x1+c2′lnx+c2′
x2c1′+xc2+x2c2′lnx+x2c2′−xc1−xc2lnx
−xc2+c1x+c2xlnx=2x We have the system
c1′x+c2′xlnx=0
x2c1′+x2c2′lnx+x2c2′=2x Then
c1′=−c2′lnx
−x2c2′lnx+x2c2′lnx+x2c2′=2x
c1′=−c2′lnx
c2′x=2
c2=∫x2dx
c1=−∫x2lnxdx
c1=−ln2(x)+C3
c2=2ln(x)+C4
y=−xln2(x)+C3x+2xln2(x)+C4xln(x)
y=xln2(x)+C3x+C4xln(x)
Comments