Question #211128

how to solve xy''+y'=0


1
Expert's answer
2021-06-28T16:41:33-0400
xy+y=0xy''+y'=0

y=u,y=uy'=u, y''=u'

xu+u=0xu'+u=0

xdudx=ux\dfrac{du}{dx}=-u

duu=dxx\dfrac{du}{u}=-\dfrac{dx}{x}

duu=dxx\int\dfrac{du}{u}=-\int\dfrac{dx}{x}

lnu=lnx+lnC1\ln|u|=-\ln|x|+\ln C_1

u=C1xu=\dfrac{C_1}{x}

y=C1xy'=\dfrac{C_1}{x}

dy=C1xdx\int dy=\int\dfrac{C_1}{x}dx

y=C1lnx+C2y=C_1\ln |x|+C_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS