Question #211002

Solve


solve (3x^2+2xy^2)dx+(2x^2y)dy=0 where y(2)=-3


1
Expert's answer
2021-06-29T07:50:11-0400
(3x2+2xy2)dx+(2x2y)dy=0(3x^2+2xy^2)dx+(2x^2y)dy=0

P=3x2+2xy2,Py=4xyP=3x^2+2xy^2, \dfrac{\partial P}{\partial y}=4xy

Q=2x2y,Qx=4xyQ=2x^2y, \dfrac{\partial Q}{\partial x}=4xy

Py=4xy=Qx\dfrac{\partial P}{\partial y}=4xy=\dfrac{\partial Q}{\partial x}

ux=P(x,y),uy=Q(x,y)\dfrac{\partial u}{\partial x}=P(x, y), \dfrac{\partial u}{\partial y}=Q(x,y)

u(x,y)=(3x2+2xy2)dx+φ(y)u(x,y)=\int(3x^2+2xy^2)dx+\varphi(y)

=x3+x2y2+φ(y)=x^3+x^2y^2+\varphi(y)

uy=2x2y+φ(y)=2x2y\dfrac{\partial u}{\partial y}=2x^2y+\varphi'(y)=2x^2y

φ(y)=0\varphi'(y)=0

φ(y)=C1\varphi(y)=C_1

The general solution of the differential equation


(3x2+2xy2)dx+(2x2y)dy=0(3x^2+2xy^2)dx+(2x^2y)dy=0

is given by


x3+x2y2=Cx^3+x^2y^2=C

 y(2)=-3


(2)3+(2)2(3)2=C(2)^3+(2)^2(-3)^2=C

C=44C=44

The solution of the IVP is


x3+x2y2=44x^3+x^2y^2=44

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS