(3x2+2xy2)dx+(2x2y)dy=0
P=3x2+2xy2,∂y∂P=4xy
Q=2x2y,∂x∂Q=4xy
∂y∂P=4xy=∂x∂Q
∂x∂u=P(x,y),∂y∂u=Q(x,y)
u(x,y)=∫(3x2+2xy2)dx+φ(y)
=x3+x2y2+φ(y)
∂y∂u=2x2y+φ′(y)=2x2y
φ′(y)=0
φ(y)=C1
The general solution of the differential equation
(3x2+2xy2)dx+(2x2y)dy=0 is given by
x3+x2y2=C y(2)=-3
(2)3+(2)2(−3)2=C
C=44 The solution of the IVP is
x3+x2y2=44
Comments