Question #211001

Consider ODE

(3x^2y^2+x^2)dx+(2x^3y+y^2)dy=0

Find genaral solution


1
Expert's answer
2021-06-29T07:51:08-0400
(3x2y2+x2)dx+(2x3y+y2)dy=0(3x^2y^2+x^2)dx+(2x^3y+y^2)dy=0

P=3x2y2+x2,Py=6x2yP=3x^2y^2+x^2, \dfrac{\partial P}{\partial y}=6x^2y

Q=2x3y+y2,Qx=6x2yQ=2x^3y+y^2, \dfrac{\partial Q}{\partial x}=6x^2y

Py=6x2y=Qx\dfrac{\partial P}{\partial y}=6x^2y=\dfrac{\partial Q}{\partial x}

ux=P(x,y),uy=Q(x,y)\dfrac{\partial u}{\partial x}=P(x, y), \dfrac{\partial u}{\partial y}=Q(x,y)

u(x,y)=(3x2y2+x2)dx+φ(y)u(x,y)=\int(3x^2y^2+x^2)dx+\varphi(y)

=x3y2+13x3+φ(y)=x^3y^2+\dfrac{1}{3}x^3+\varphi(y)

uy=2x3y+φ(y)=2x3y+y2\dfrac{\partial u}{\partial y}=2x^3y+\varphi'(y)=2x^3y+y^2

φ(y)=y2\varphi'(y)=y^2

φ(y)=13y3+C1\varphi(y)=\dfrac{1}{3}y^3+C_1

The general solution of the differential equation


(3x2y2+x2)dx+(2x3y+y2)dy=0(3x^2y^2+x^2)dx+(2x^3y+y^2)dy=0

is given by


x3y2+13x3+13y3=Cx^3y^2+\dfrac{1}{3}x^3+\dfrac{1}{3}y^3=C

 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS