(3x2y2+x2)dx+(2x3y+y2)dy=0
P=3x2y2+x2,∂y∂P=6x2y
Q=2x3y+y2,∂x∂Q=6x2y
∂y∂P=6x2y=∂x∂Q
∂x∂u=P(x,y),∂y∂u=Q(x,y)
u(x,y)=∫(3x2y2+x2)dx+φ(y)
=x3y2+31x3+φ(y)
∂y∂u=2x3y+φ′(y)=2x3y+y2
φ′(y)=y2
φ(y)=31y3+C1
The general solution of the differential equation
(3x2y2+x2)dx+(2x3y+y2)dy=0 is given by
x3y2+31x3+31y3=C
Comments