Question #210648

Solve the following PDE using the method of separation of variables and Fourier series

utt = c2uxx, 0<x<1, t<0

u(0,t) = 0, t>0

u(1,t) = 0, t>0

u(x,0) = 2x(1-x), 0<=x<=1

ut(x,0) =0


1
Expert's answer
2021-06-28T03:56:09-0400

We consider the wave equation satisfying Dirichlet boundary condition:

utt=c2uxxu_{tt}=c^2u_{xx} , 0<x<1,  t>00<x<1,\ \ t>0

u(0,t)=u(1,t)=0u(0,t)=u(1,t)=0 , t0t\geq 0

u(x,0)=2x(1x),0x1u(x,0)=2x(1-x),\quad 0\leq x\leq 1

ut(x,0)=0, 0x1u_t(x,0)=0,\quad\quad \quad \quad \ 0\leq x\leq 1


We look for solutions of the form u(x,t)=n=1(Ancos(πnct)+Bnsin(πnct))sin(πnx)u(x,t)=\sum \limits_{n=1}^\infty\big(A_n\cos (\pi nct)+B_n\sin (\pi nct)\big) \sin (\pi nx)

Setting t=0t=0 , we get

u(x,0)=n=1Ansin(πnx)=2x(1x)u(x,0)= \sum \limits_{n=1}^\infty A_n\sin (\pi nx)=2x(1-x)

Coefficients AnA_n are equal to An=2012x(1x)sin(πnx)dx=cos(πnx)πn4x(1x)01+01cos(πnx)πn4(12x)dx=01cos(πnx)πn4(12x)dx=sin(πnx)π2n24(12x)01+8π2n201sin(πnx)dx=cos(πnx)πn8π2n201=8π3n3(1cos(πn))={0,n=2k16π3n3,n=2k+1A_n=2\int \limits_0^1 2x(1-x)\sin (\pi nx)dx=- \frac{\cos (\pi nx)}{\pi n} 4x(1-x)\bigg|_0^1+\int\limits_0^1 \frac{\cos (\pi nx)}{\pi n}4(1-2x)dx= \int\limits_0^1 \frac{\cos (\pi nx)}{\pi n}4(1-2x)dx= \frac{\sin (\pi nx)}{\pi ^2 n^2 }4(1-2x)\bigg|_0^1 +\frac{8}{\pi^2n^2}\int\limits_0^1 \sin (\pi n x)dx=-\frac{\cos (\pi n x)}{\pi n}\cdot \frac{8}{\pi^2n^2}\bigg|_0^1 =\frac{8}{\pi^3n^3}(1-\cos(\pi n))=\begin{cases} 0, \quad n=2k \\ \frac{16}{\pi^3n^3}, \quad n=2k+1 \end{cases}



ut(x,t)=n=1πnc(Bncos(πnct)Ansin(πnct))sin(πnx)u_t(x,t)=\sum \limits_{n=1}^\infty \pi n c\big(B_n\cos (\pi nct)-A_n\sin (\pi nct)\big) \sin (\pi nx)

Setting t=0t=0 , we get 

ut(x,0)=n=1πncBnsin(πnx)=0u_t(x,0)=\sum\limits_{n=1}^\infty \pi n cB_n\sin (\pi n x)=0

Therefore, Bn=0  nB_n=0\ \ \forall n .


Answer: u(x,t)=k=016π3(2k+1)3cos(π(2k+1)ct)sin(π(2k+1)x).u(x,t)=\sum\limits_{k=0}^\infty \frac{16}{\pi^3(2k+1)^3}\cos (\pi (2k+1)ct) \sin (\pi(2k+1)x).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS