Solve the following PDE using the method of separation of variables and Fourier series
utt = c2uxx, 0<x<1, t<0
u(0,t) = 0, t>0
u(1,t) = 0, t>0
u(x,0) = 2x(1-x), 0<=x<=1
ut(x,0) =0
1
Expert's answer
2021-06-28T03:56:09-0400
We consider the wave equation satisfying Dirichlet boundary condition:
utt=c2uxx , 0<x<1,t>0
u(0,t)=u(1,t)=0 , t≥0
u(x,0)=2x(1−x),0≤x≤1
ut(x,0)=0,0≤x≤1
We look for solutions of the form u(x,t)=n=1∑∞(Ancos(πnct)+Bnsin(πnct))sin(πnx)
Setting t=0 , we get
u(x,0)=n=1∑∞Ansin(πnx)=2x(1−x)
Coefficients An are equal to An=20∫12x(1−x)sin(πnx)dx=−πncos(πnx)4x(1−x)∣∣01+0∫1πncos(πnx)4(1−2x)dx=0∫1πncos(πnx)4(1−2x)dx=π2n2sin(πnx)4(1−2x)∣∣01+π2n280∫1sin(πnx)dx=−πncos(πnx)⋅π2n28∣∣01=π3n38(1−cos(πn))={0,n=2kπ3n316,n=2k+1
Comments