Question #210562

Solve the initial value probelm of y'-y=e^x, y(1)=0


1
Expert's answer
2021-06-28T03:36:55-0400

The integrating factor is edx=exMultiply the given differential equation by ex    exyexy=exexd(exy)=1dxexy=x+cy=xex+cexRecall that y(1)=0    0=e1+ce1Therefore c = -1, hence the general solution is y=xexex\text{The integrating factor is } e^{-\int dx}=e^{-x}\\\text{Multiply the given differential equation by } e^{-x} \\\implies e^{-x}y'-e^{-x}y=e^{-x}e^x\\\int d(e^{-x}y)=\int1dx\\e^{-x}y=x+c\\y=xe^x+ce^{x}\\\text{Recall that y(1)=0}\\\implies0=e^1 +ce^1\\\text{Therefore c = -1, hence the general solution is }y =xe^x-e^x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS