Question #210560

Find the initial value problem of y'=y+x/y-x, y(0)= 2


1
Expert's answer
2021-06-28T03:32:52-0400

We set y = vx    dydx=v+xdydx\text{We set y = vx}\implies \frac{dy}{dx}= v+x\frac{dy}{dx}

    v+xdydx=vx+xvxx=v+1v1    xdydx=v22v1v1v1v22v1=dxx=12In(v22v1)=Inx+inA\implies v+x\frac{dy}{dx}= \frac{vx+x}{vx-x}= \frac{v+1}{v-1} \\ \implies x\frac{dy}{dx} = -\frac{v^2-2v-1}{v-1}\\-\int\frac{v-1}{v^2-2v-1}=\int\frac{dx}{x}\\=-\frac{1}{2}In(v^2-2v-1)=Inx+inA

=In(v22v1)=2InAxrecall that y = vx    v=yx    In(y2x22yx1)=2InAx=In(y22xyx2)Inx2=2InAx=In(y22xyx2)=Inx2A2x2=In(y22xyx2)=In1A2=inD, by setting D = 1A2Therefore, y22xyx2=D,Given y(0) = 2Hence, D=4    y22xyx2=4=In(v^2-2v-1)=-2InAx\\\text{recall that y = vx}\implies v=\frac{y}{x}\\\implies In(\frac{y^2}{x^2}-\frac{2y}{x}-1) =-2InAx\\=In(y^2-2xy-x^2) - Inx^2 = -2InAx\\=In(y^2-2xy-x^2)= In\frac{x^2}{A^2x^2}\\=In(y^2-2xy-x^2)= In\frac{1}{A^2} = inD \text{, by setting D = } \frac{1}{A^2}\\\text{Therefore, }y^2-2xy-x^2=D, \text{Given y(0) = 2}\\\text{Hence, }D=4\implies y^2 -2xy-x^2=4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS