We set y = vx⟹dxdy=v+xdxdy
⟹v+xdxdy=vx−xvx+x=v−1v+1⟹xdxdy=−v−1v2−2v−1−∫v2−2v−1v−1=∫xdx=−21In(v2−2v−1)=Inx+inA
=In(v2−2v−1)=−2InAxrecall that y = vx⟹v=xy⟹In(x2y2−x2y−1)=−2InAx=In(y2−2xy−x2)−Inx2=−2InAx=In(y2−2xy−x2)=InA2x2x2=In(y2−2xy−x2)=InA21=inD, by setting D = A21Therefore, y2−2xy−x2=D,Given y(0) = 2Hence, D=4⟹y2−2xy−x2=4
Comments