( D 2 − 2 D + 3 ) y = x 2 − 1 (D^2 - 2D +3) y = x^2 - 1 ( D 2 − 2 D + 3 ) y = x 2 − 1
The differential equation can be written as
y ′ ′ − 2 y ′ + 3 y = x 2 − 1 y'' - 2y' +3y = x^2 -1 y ′′ − 2 y ′ + 3 y = x 2 − 1
The auxiliary equation of the homogenous part is
m 2 − 2 m + 3 = 0 m^2-2m+3 = 0 m 2 − 2 m + 3 = 0
Solving the quadratic equation, we have that
m = 1 ± 2 i m = 1 \pm \sqrt{2}i m = 1 ± 2 i
Hence the solution of the homogenous part is
y = e x ( c 1 cos 2 x + i c 2 sin 2 x ) y = e^x(c_1\cos \sqrt{2}x + i \,c_2\sin \sqrt{2}x) y = e x ( c 1 cos 2 x + i c 2 sin 2 x )
We use the method of undetermined coefficient to solve the other part.
Suppose
y = a x 2 + b x + c y = ax^2 + bx + c y = a x 2 + b x + c
Then
y ′ = 2 a x + b y' = 2ax + b y ′ = 2 a x + b
y ′ ′ = 2 a y'' = 2a y ′′ = 2 a
Substituting into the given differential equation, we have
2 a − 2 ( 2 a x + b ) + 3 ( a x 2 + b x + c ) = x 2 − 1 2a-2(2ax+b)+3(ax^2+bx+c) = x^2 - 1 2 a − 2 ( 2 a x + b ) + 3 ( a x 2 + b x + c ) = x 2 − 1
Comparing the coefficients of x 2 x^2 x 2 we have
3 a = 1 ⟹ a = 1 3 3a = 1 \implies a = \dfrac{1}{3} 3 a = 1 ⟹ a = 3 1
Comparing the coefficients of x, we have
− 4 a + 3 b = 0 ⟹ b = 4 9 -4a +3b = 0 \implies b = \dfrac{4}{9} − 4 a + 3 b = 0 ⟹ b = 9 4
Comparing the constants, we have2 a − 2 b + 3 c = − 1 ⟹ c = − 7 27 2a -2b+3c = -1 \implies c = - \dfrac{7}{27} 2 a − 2 b + 3 c = − 1 ⟹ c = − 27 7
Hence, we have that the solution for this part is y = 1 3 x 2 + 4 9 x − 7 27 y= \frac{1}{3}x^2 + \frac{4}{9}x - \frac{7}{27} y = 3 1 x 2 + 9 4 x − 27 7
So the general solution is
y = e x ( c 1 cos 2 x + i c 2 sin 2 x ) + 1 3 x 2 + 4 9 x − 7 27 y = e^x(c_1\cos \sqrt{2}x + i \,c_2\sin \sqrt{2}x) +\frac{1}{3}x^2 + \frac{4}{9}x - \frac{7}{27} y = e x ( c 1 cos 2 x + i c 2 sin 2 x ) + 3 1 x 2 + 9 4 x − 27 7
Comments
Dear Nshalati, please submit a new question and describe all requirements to avoid any misunderstanding.
Thank you. Can you solve it using the D-operator method?