Solution
Let
z(t)=∑n=0∞antn
dtdz=∑n=1∞nantn−1=∑n=0∞(n+1)an+1tn
It’s known that
et=∑n=0∞n!tn
zet=∑n=0∞(∑i=0ni!an−i)tn
Plug these into the differential equation
∑n=0∞(n+1)an+1tn−∑n=0∞(∑i=0ni!an−i)tn=∑n=1∞an−1tn
Coefficient near tn are equal to zero.
n=0 : a1- a0=0 => a1 = a0
n=1 : 2a2- a0- a1 = a0 => a2= a0+ a1/2 => a2= 3a0/2
n=2 : 3a3- a0/2- a1 -a2= a1 => a3= a0/3!+2a1/3+ a2/3 => a3= a0/3!+2a0/3+ 3a0/6 => a3= 8a0/3!
n=3 : 4a4- a0/3!- a1 /2!-a2-a3 =a2 => a4= a0/4!+a1/8+ 2a2/4 + a3/4 => a4= a0/4!+a0/8+ 2*3a0/8 + 8a0/4! => a4= 30a0/4!
n=4 : 5a5- a0/4!- a1 /3!-a2/2!-a3 -a4 =a3 => a5= a0/5!+ a1 /(5*3!)+a2/(5*2!)+2a3/5+a4/5 => a5= a0/5!+ a0/(5*3!)+3a0/(5*2*2!)+16a0/(5*3!)+30a0/5! = a0/5!+ 4a0/5!+18a0/5!+64a0/(5!)+30a0/5! => a5= 117a0/5!
And so on. For an= bn/n! we’ll get simplified recurrent formula for bn
b1=b0; bn+1=∑i=0n(in)bn−i+nbn−1 (n>0)
and solution
z(t)=∑n=0∞n!bntn
Comments