Question #209576

b. Find the series solution of the following differential equation


dz/dt -zet=tz


1
Expert's answer
2021-06-23T06:56:36-0400

Solution

Let

z(t)=n=0antnz\left(t\right)=\sum_{n=0}^{\infty}{a_nt^n}

dzdt=n=1nantn1=n=0(n+1)an+1tn\frac{dz}{dt}=\sum_{n=1}^{\infty}{na_nt^{n-1}}=\sum_{n=0}^{\infty}{\left(n+1\right)a_{n+1}t^n}

It’s known that

et=n=0tnn!e^t=\sum_{n=0}^{\infty}\frac{t^n}{n!}

zet=n=0(i=0nanii!)tnze^t=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}\frac{a_{n-i}}{i!}\right)t^n

Plug these into the differential equation

n=0(n+1)an+1tnn=0(i=0nanii!)tn=n=1an1tn\sum_{n=0}^{\infty}{\left(n+1\right)a_{n+1}t^n}-\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}\frac{a_{n-i}}{i!}\right)t^n=\sum_{n=1}^{\infty}{a_{n-1}t^n}

Coefficient near tn are equal to zero.

n=0 : a1- a0=0 => a1 = a0 

n=1 : 2a2- a0- a1 = a0 => a2= a0+ a1/2 => a2= 3a0/2    

n=2 : 3a3- a0/2- a1 -a2= a1 => a3= a0/3!+2a1/3+ a2/3 => a3= a0/3!+2a0/3+ 3a0/6 => a3= 8a0/3!     

n=3 : 4a4- a0/3!- a1 /2!-a2-a3 =a2 => a4= a0/4!+a1/8+ 2a2/4 + a3/4  => a4= a0/4!+a0/8+ 2*3a0/8 + 8a0/4!  => a4= 30a0/4!   

n=4 : 5a5- a0/4!- a1 /3!-a2/2!-a3 -a4 =a3 => a5= a0/5!+ a1 /(5*3!)+a2/(5*2!)+2a3/5+a4/5 => a5= a0/5!+ a0/(5*3!)+3a0/(5*2*2!)+16a0/(5*3!)+30a0/5! = a0/5!+ 4a0/5!+18a0/5!+64a0/(5!)+30a0/5! => a5= 117a0/5!  

And so on. For an= bn/n!  we’ll get simplified recurrent formula for bn  

b1=b0; bn+1=i=0n(ni)bni+nbn1 (n>0)b_1=b_0;\ b_{n+1}=\sum_{i=0}^{n}{\binom{n}{i}b_{n-i}}+nb_{n-1}\ (n>0)

and solution

z(t)=n=0bnn!tnz\left(t\right)=\sum_{n=0}^{\infty}{\frac{b_n}{n!}t^n}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS