P(v,w)=4vw+w2
Pw=4v+2w
Q(v,w)=−2v2+2w
Qv=−4v
Pw−Qv=4v+2w+4v=8v+2w
PPw−Qv=4vw+w28v+2w=w2=−ψ(w)
μ(w)=e∫−w2dw=w−2
(4wv+1)dv+(−2w2v2+2w1)dw=0
Mw=−4w2v
Nv=−4w2v
Mw=−4w2v=Nv
u(v,w)=∫(4wv+1)dv+φ(w)
=2wv2+v+φ(w)
uw=−2w2v2+φ′(w)
=−2w2v2+2w1
φ′(w)=2w1
φ(w)=2lnw+C1
The general solution of the differential equation
w(4v+w)dv−2(v2−w)dw=0 is given by
2wv2+v+lnw2=C
Comments