Question #209482

 w (4v + w) dv - 2 (v^2 - w) dw = 0


1
Expert's answer
2021-06-22T17:57:00-0400
P(v,w)=4vw+w2P(v, w)=4vw+w^2

Pw=4v+2wP_w=4v+2w


Q(v,w)=2v2+2wQ(v,w)=-2v^2+2w

Qv=4vQ_v=-4v

PwQv=4v+2w+4v=8v+2wP_w-Q_v=4v+2w+4v=8v+2w

PwQvP=8v+2w4vw+w2=2w=ψ(w)\dfrac{P_w-Q_v}{P}=\dfrac{8v+2w}{4vw+w^2}=\dfrac{2}{w}=-\psi(w)


μ(w)=e2wdw=w2\mu(w)=e^{\int-{2 \over w}dw}=w^{-2}


(4vw+1)dv+(2v2w2+21w)dw=0(4\dfrac{v}{w}+1)dv+(-2\dfrac{v^2}{w^2}+2\dfrac{1}{w})dw=0

Mw=4vw2M_w=-4\dfrac{v}{w^2}


Nv=4vw2N_v=-4\dfrac{v}{w^2}

Mw=4vw2=NvM_w=-4\dfrac{v}{w^2}=N_v

u(v,w)=(4vw+1)dv+φ(w)u(v,w)=\int(4\dfrac{v}{w}+1)dv+\varphi(w)

=2v2w+v+φ(w)=2\dfrac{v^2}{w}+v+\varphi(w)

uw=2v2w2+φ(w)u_w=-2\dfrac{v^2}{w^2}+\varphi'(w)

=2v2w2+21w=-2\dfrac{v^2}{w^2}+2\dfrac{1}{w}

φ(w)=21w\varphi'(w)=2\dfrac{1}{w}

φ(w)=2lnw+C1\varphi(w)=2\ln w+C_1

The general solution of the differential equation


w(4v+w)dv2(v2w)dw=0w (4v + w) dv - 2 (v^2 - w) dw=0

is given by


2v2w+v+lnw2=C2\dfrac{v^2}{w}+v+\ln w^2=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS