Answer to Question #203366 in Differential Equations for manu

Question #203366

(D+3)^2y=sinh2x


1
Expert's answer
2021-06-14T17:44:19-0400

The auxiliary equation to the homogenous part of the given differential equation is given as:


"(D+3)^2=0\\\\"

Thus, we proceed to get the root of the equation:


"(D+3)(D+3)=0\\\\\nD=-3 \\ (twice)"

"\\therefore C \\cdot F .=\\left(C_{1}+C_{2} x\\right) e^{-3 x}\\\\\n\\text{}\\\\\n\\operatorname{Sinh} x=\\frac{e^{x}-e^{-x}}{2}\\\\\n\\text{}\\\\\n\\text{Particular Integral}\\\\\nP.I. =\\frac{\\operatorname{Sinh} 2 x}{(D+3)^{2}}\\\\\n=\\frac{1}{2}\\left[\\frac{e^{2 x}-e^{-2 x}}{(D+3)^{2}}\\right]\\\\\n=\\frac{1}{2} \\frac{e^{2 x}}{(D+3)^{2}}-\\frac{1}{2} \\frac{e^{-2 x}}{(D+3)^{2}}\\\\\n=\\frac{1}{2} \\frac{e^{2 x}}{(2+3)^{2}}-\\frac{1}{2} \\frac{e^{-2 x}}{(-2+3)^{2}}\\\\\n=\\frac{e^{2 x}}{50}-\\frac{e^{-2 x}}{2}\\\\\n\\text{}\\\\\n\\text{Hence the complete solution}\\\\\nY=C . F .+P . I\\\\\nY=\\left(C_{1}+C_{2} x\\right) e^{-3 x}+\\frac{e^{2 x}}{50}-\\frac{e^{-2 x}}{2}\\\\"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS