The auxiliary equation to the homogenous part of the given differential equation is given as:
(D+3)2=0 Thus, we proceed to get the root of the equation:
(D+3)(D+3)=0D=−3 (twice)
∴C⋅F.=(C1+C2x)e−3xSinhx=2ex−e−xParticular IntegralP.I.=(D+3)2Sinh2x=21[(D+3)2e2x−e−2x]=21(D+3)2e2x−21(D+3)2e−2x=21(2+3)2e2x−21(−2+3)2e−2x=50e2x−2e−2xHence the complete solutionY=C.F.+P.IY=(C1+C2x)e−3x+50e2x−2e−2x
Comments