(D+3)^2y=sinh2x
The auxiliary equation to the homogenous part of the given differential equation is given as:
Thus, we proceed to get the root of the equation:
"\\therefore C \\cdot F .=\\left(C_{1}+C_{2} x\\right) e^{-3 x}\\\\\n\\text{}\\\\\n\\operatorname{Sinh} x=\\frac{e^{x}-e^{-x}}{2}\\\\\n\\text{}\\\\\n\\text{Particular Integral}\\\\\nP.I. =\\frac{\\operatorname{Sinh} 2 x}{(D+3)^{2}}\\\\\n=\\frac{1}{2}\\left[\\frac{e^{2 x}-e^{-2 x}}{(D+3)^{2}}\\right]\\\\\n=\\frac{1}{2} \\frac{e^{2 x}}{(D+3)^{2}}-\\frac{1}{2} \\frac{e^{-2 x}}{(D+3)^{2}}\\\\\n=\\frac{1}{2} \\frac{e^{2 x}}{(2+3)^{2}}-\\frac{1}{2} \\frac{e^{-2 x}}{(-2+3)^{2}}\\\\\n=\\frac{e^{2 x}}{50}-\\frac{e^{-2 x}}{2}\\\\\n\\text{}\\\\\n\\text{Hence the complete solution}\\\\\nY=C . F .+P . I\\\\\nY=\\left(C_{1}+C_{2} x\\right) e^{-3 x}+\\frac{e^{2 x}}{50}-\\frac{e^{-2 x}}{2}\\\\"
Comments
Leave a comment