Question #202937

Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Form the general solution x^3 (y''') + 6x^2 (y'') + 4xy' - 4y =0; x, x^-2, x^-2 (lnx), (0,infinity)?


1
Expert's answer
2021-06-07T18:38:14-0400

The functions f1(x)=x,f2(x)=x2,f3(x)=x2lnxf_1(x)=x,f_2(x)=x^{-2},f_3(x)=x^{-2}lnx are linearly independent if the Wronskian:

W=f1f2f3f1f2f3f1f2f30W=\begin{vmatrix} f_1 & f_2&f_3 \\ f'_1 & f'_2&f'_3\\ f''_1 & f''_2&f''_3\\ \end{vmatrix}\ne 0


W=xx2x2lnx12x32x3lnx+x306x46x4lnx2x43x4=W=\begin{vmatrix} x & x^{-2}&x^{-2}lnx \\ 1 & -2x^{-3}&-2x^{-3}lnx+x^{-3}\\ 0 & 6x^{-4}&6x^{-4}lnx-2x^{-4}-3x^{-4}\\ \end{vmatrix}=


=x2x32x3lnx+x36x46x4lnx5x4x2x2lnx6x46x4lnx5x4==x\begin{vmatrix} -2x^{-3} & -2x^{-3}lnx+x^{-3} \\ 6x^{-4} & 6x^{-4}lnx-5x^{-4} \end{vmatrix}-\begin{vmatrix} x^{-2} & x^{-2}lnx \\ 6x^{-4} & 6x^{-4}lnx-5x^{-4} \end{vmatrix}=


=x(12x7lnx+10x7+12x7lnx6x7)=x(-12x^{-7}lnx+10x^{-7}+12x^{-7}lnx-6x^{-7})-

(6x6lnx5x66x6lnx)=x(4x7)+5x6=x60-(6x^{-6}lnx-5x^{-6}-6x^{-6}lnx)=x(4x^{-7})+5x^{-6}=x^{-6}\ne 0


So, the given functions form a fundamental set of solutions of the differential equation on the indicated interval.


The general solution:

y(x)=c1x+c2x2+c3x2lnxy(x)=c_1x+c_2x^{-2}+c_3x^{-2}lnx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS