Answer to Question #202730 in Differential Equations for Kevin

Question #202730

Solve yzdx-xzdy-(x^2+y^2)tan^-1(y/x)dz=0


1
Expert's answer
2021-06-07T19:33:17-0400

Question:-

"yzdx-xzdy-(x^2+y^2)tan^{-1}(\\frac{y}{x})dz=0..........(1)"



Given

"yzdx-xzdy-(x^2+y^2)tan^{-1}(\\frac{y}{x})dz=0..........(1)\\\\or\\\\\nyzdx-xzdy=(x^2+y^2)tan^{-1}(\\frac{y}{x})dz"


Lagrange's auxiliary equation

"\\frac{dx}{yz}=\\frac{dy}{-xz}=\\frac{dz}{(x^2+y^2)tan^{-1}(\\frac{y}{x})}"

"from \\space I=II"

-xdx=ydy

y2+x2=c1............(2)


again


"yzdx-xzdy-(x^2+y^2)tan^{-1}(\\frac{y}{x})dz=0\\\\\nor\n\\\\\nydx-xdy-(x^2+y^2)tan^{-1}(\\frac{y}{x})\\frac{dz}{z}=0"

let

"\\\\ \\frac{y}{x}=t\\\\\ndiffrentiate\\\\\n\\frac{xdy-ydx}{x^2}=dt"

put the values and we get

"(-x^2dt)-(x^2+y^2)tan^{-1}(t)\\frac{dz}{z}=0\\\\\n-dt -(1+t^2) tan^{-1}(t) \\frac{dz}{z}=0\\\\\nor\\\\\n\\frac{dt}{(1+t^2)(tan^{-1}(t))}+\\frac{dz}{z}=0\\\\\nlet \n\\\\tan^{-1}(t)=m\\\\\ndifferentiate\\\\\n\\frac{dt}{(1+t^2)}=dm\\\\\nput \\space values,\\\\\n\\frac{dm}{m}+\\frac{dz}{z}=0\\\\\nintegrate\\\\\nlog(mz)=log(c_2)\\\\\nmz=c_2\\\\\nagain \\space put \\space values(m,t)\\\\\nz .tan^{-1}(\\frac{y}{x})=c_2........(3)\n\\\\hence\\\\\nanswer\\\\\nf(c_1,c_2)=0\n\\\\f(x^2+y^2,z.tan^{-1}(\\frac{y}{x})=0"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS