Answer to Question #202730 in Differential Equations for Kevin

Question #202730

Solve yzdx-xzdy-(x^2+y^2)tan^-1(y/x)dz=0


1
Expert's answer
2021-06-07T19:33:17-0400

Question:-

yzdxxzdy(x2+y2)tan1(yx)dz=0..........(1)yzdx-xzdy-(x^2+y^2)tan^{-1}(\frac{y}{x})dz=0..........(1)



Given

yzdxxzdy(x2+y2)tan1(yx)dz=0..........(1)oryzdxxzdy=(x2+y2)tan1(yx)dzyzdx-xzdy-(x^2+y^2)tan^{-1}(\frac{y}{x})dz=0..........(1)\\or\\ yzdx-xzdy=(x^2+y^2)tan^{-1}(\frac{y}{x})dz


Lagrange's auxiliary equation

dxyz=dyxz=dz(x2+y2)tan1(yx)\frac{dx}{yz}=\frac{dy}{-xz}=\frac{dz}{(x^2+y^2)tan^{-1}(\frac{y}{x})}

from I=IIfrom \space I=II

-xdx=ydy

y2+x2=c1............(2)


again


yzdxxzdy(x2+y2)tan1(yx)dz=0orydxxdy(x2+y2)tan1(yx)dzz=0yzdx-xzdy-(x^2+y^2)tan^{-1}(\frac{y}{x})dz=0\\ or \\ ydx-xdy-(x^2+y^2)tan^{-1}(\frac{y}{x})\frac{dz}{z}=0

let

yx=tdiffrentiatexdyydxx2=dt\\ \frac{y}{x}=t\\ diffrentiate\\ \frac{xdy-ydx}{x^2}=dt

put the values and we get

(x2dt)(x2+y2)tan1(t)dzz=0dt(1+t2)tan1(t)dzz=0ordt(1+t2)(tan1(t))+dzz=0lettan1(t)=mdifferentiatedt(1+t2)=dmput values,dmm+dzz=0integratelog(mz)=log(c2)mz=c2again put values(m,t)z.tan1(yx)=c2........(3)henceanswerf(c1,c2)=0f(x2+y2,z.tan1(yx)=0(-x^2dt)-(x^2+y^2)tan^{-1}(t)\frac{dz}{z}=0\\ -dt -(1+t^2) tan^{-1}(t) \frac{dz}{z}=0\\ or\\ \frac{dt}{(1+t^2)(tan^{-1}(t))}+\frac{dz}{z}=0\\ let \\tan^{-1}(t)=m\\ differentiate\\ \frac{dt}{(1+t^2)}=dm\\ put \space values,\\ \frac{dm}{m}+\frac{dz}{z}=0\\ integrate\\ log(mz)=log(c_2)\\ mz=c_2\\ again \space put \space values(m,t)\\ z .tan^{-1}(\frac{y}{x})=c_2........(3) \\hence\\ answer\\ f(c_1,c_2)=0 \\f(x^2+y^2,z.tan^{-1}(\frac{y}{x})=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment