Question:-
yzdx−xzdy−(x2+y2)tan−1(xy)dz=0..........(1)
Given
yzdx−xzdy−(x2+y2)tan−1(xy)dz=0..........(1)oryzdx−xzdy=(x2+y2)tan−1(xy)dz
Lagrange's auxiliary equation
yzdx=−xzdy=(x2+y2)tan−1(xy)dz
from I=II
-xdx=ydy
y2+x2=c1............(2)
again
yzdx−xzdy−(x2+y2)tan−1(xy)dz=0orydx−xdy−(x2+y2)tan−1(xy)zdz=0
let
xy=tdiffrentiatex2xdy−ydx=dt
put the values and we get
(−x2dt)−(x2+y2)tan−1(t)zdz=0−dt−(1+t2)tan−1(t)zdz=0or(1+t2)(tan−1(t))dt+zdz=0lettan−1(t)=mdifferentiate(1+t2)dt=dmput values,mdm+zdz=0integratelog(mz)=log(c2)mz=c2again put values(m,t)z.tan−1(xy)=c2........(3)henceanswerf(c1,c2)=0f(x2+y2,z.tan−1(xy)=0
Comments
Leave a comment