Solve yzdx-xzdy-(x^2+y^2)tan^-1(y/x)dz=0
Question:-
"yzdx-xzdy-(x^2+y^2)tan^{-1}(\\frac{y}{x})dz=0..........(1)"
Given
"yzdx-xzdy-(x^2+y^2)tan^{-1}(\\frac{y}{x})dz=0..........(1)\\\\or\\\\\nyzdx-xzdy=(x^2+y^2)tan^{-1}(\\frac{y}{x})dz"
Lagrange's auxiliary equation
"\\frac{dx}{yz}=\\frac{dy}{-xz}=\\frac{dz}{(x^2+y^2)tan^{-1}(\\frac{y}{x})}"
"from \\space I=II"
-xdx=ydy
y2+x2=c1............(2)
again
"yzdx-xzdy-(x^2+y^2)tan^{-1}(\\frac{y}{x})dz=0\\\\\nor\n\\\\\nydx-xdy-(x^2+y^2)tan^{-1}(\\frac{y}{x})\\frac{dz}{z}=0"
let
"\\\\ \\frac{y}{x}=t\\\\\ndiffrentiate\\\\\n\\frac{xdy-ydx}{x^2}=dt"
put the values and we get
"(-x^2dt)-(x^2+y^2)tan^{-1}(t)\\frac{dz}{z}=0\\\\\n-dt -(1+t^2) tan^{-1}(t) \\frac{dz}{z}=0\\\\\nor\\\\\n\\frac{dt}{(1+t^2)(tan^{-1}(t))}+\\frac{dz}{z}=0\\\\\nlet \n\\\\tan^{-1}(t)=m\\\\\ndifferentiate\\\\\n\\frac{dt}{(1+t^2)}=dm\\\\\nput \\space values,\\\\\n\\frac{dm}{m}+\\frac{dz}{z}=0\\\\\nintegrate\\\\\nlog(mz)=log(c_2)\\\\\nmz=c_2\\\\\nagain \\space put \\space values(m,t)\\\\\nz .tan^{-1}(\\frac{y}{x})=c_2........(3)\n\\\\hence\\\\\nanswer\\\\\nf(c_1,c_2)=0\n\\\\f(x^2+y^2,z.tan^{-1}(\\frac{y}{x})=0"
Comments
Leave a comment