:Here the given partial differential equation is
f ( x , y , z , p , q ) = p − ( q y + z ) 2 = 0 , − ( 1 ) f(x, y, z, p, q) = p − (qy + z)^2 = 0, ~~~~~~~-(1) f ( x , y , z , p , q ) = p − ( q y + z ) 2 = 0 , − ( 1 )
Now, the auxiliary equations are
d p ∂ f ∂ x + p ∂ f ∂ z = d p ∂ f ∂ y + q ∂ f ∂ z = d z − p ∂ f ∂ p − q ∂ f ∂ q = d x − ∂ f ∂ p = d y − ∂ f ∂ q \dfrac{dp}{\frac{∂f}{∂x} +p \frac{∂f}{∂z}}=\dfrac{dp}{\frac{∂f}{∂y} + q\frac{∂f}{∂z}}=\dfrac{dz}{−p\frac{∂f}{∂p} − q\frac{∂f}{∂q}}=\dfrac{dx}{−\frac{∂f}{∂p}}=\dfrac{dy}{−\frac{∂f}{∂q}} ∂ x ∂ f + p ∂ z ∂ f d p = ∂ y ∂ f + q ∂ z ∂ f d p = − p ∂ p ∂ f − q ∂ q ∂ f d z = − ∂ p ∂ f d x = − ∂ q ∂ f d y
or,
d p 2 p ( q y + z ) = d q 2 q ( q y + z ) = d z ( − p ) ( − 1 ) − q . 2 ( q y + z ) y = d x − ( − 1 ) = d y − 2 y ( q y + z ) \dfrac{dp}{2p(qy + z)}=\dfrac{dq}{2q(qy + z)}=\dfrac{dz}{(−p)(−1) − q.2(qy + z)y}=\dfrac{dx}{−(−1)} =\dfrac{dy}{−2y(qy + z)} 2 p ( q y + z ) d p = 2 q ( q y + z ) d q = ( − p ) ( − 1 ) − q .2 ( q y + z ) y d z = − ( − 1 ) d x = − 2 y ( q y + z ) d y
Taking the 1st and 5th ratios, we get
d p p + d y y = 0 , \dfrac{dp}{p}+\dfrac{dy}{y}= 0, p d p + y d y = 0 ,
Integrating, l o g p + l o g y = l o g a log p + log y = log a l o g p + l o g y = l o g a , which gives, p = a y . p =\dfrac{a}{y}. p = y a .
Substitute in (1), we have,a y = ( q y + z ) 2 \dfrac{a}{y} = (qy + z)^2 y a = ( q y + z ) 2 , which gives, q = a y − z y q =\sqrt{\dfrac{a}{y}}-\dfrac{z}{y} q = y a − y z
Substituting these value of p and q in d z = p d x + q d y dz = p dx + q dy d z = p d x + q d y , we get,
d z = a y d x + ( a y − z y ) d y dz =\dfrac{a}{y}dx + (\sqrt{\dfrac{a}{y}}−\dfrac{z}{y}) dy d z = y a d x + ( y a − y z ) d y
or
y d z + z d y = a d x + a y d y y dz + z dy = a dx +\sqrt{\dfrac{a}{y}}dy y d z + z d y = a d x + y a d y
After integration, we get, y z = a x + 2 ( a y ) + b yz = ax +2\sqrt{(ay)}+ b yz = a x + 2 ( a y ) + b , which is a complete integral
with a and b are arbitrary constants.
Comments