We can express the system in the form X ′ = A X X'=AX X ′ = A X , where:
X = [ x y ] , X ′ = [ x ′ y ′ ] , A = [ 1 − 1 1 3 ] X=\begin{bmatrix}
x \\
y
\end{bmatrix},\quad X'=\begin{bmatrix}
x' \\
y'
\end{bmatrix},\quad A=\begin{bmatrix}
1 & -1 \\
1 & 3
\end{bmatrix} X = [ x y ] , X ′ = [ x ′ y ′ ] , A = [ 1 1 − 1 3 ] We found a normal-shaped Jordan matrix similar to the original:
∣ A − λ I ∣ = ∣ 1 − λ − 1 1 3 − λ ∣ = ( λ − 2 ) 2 |A-\lambda I|=\begin{vmatrix}
1-\lambda & -1 \\
1 & 3-\lambda
\end{vmatrix}=(\lambda -2)^2 ∣ A − λ I ∣ = ∣ ∣ 1 − λ 1 − 1 3 − λ ∣ ∣ = ( λ − 2 ) 2 Therefore, its eigenvalue is λ = 2 \lambda=2 λ = 2 with algebraic multiplicity 2 2 2 .
We find the eigenvectors of eigenvalue λ = 2 \lambda=2 λ = 2 :
v = ( − 1 , 1 ) v=(-1,1) v = ( − 1 , 1 ) We know that for repeated real eigenvalues λ \lambda λ with multiplicity 2 2 2 and eigenvector v v v , the general solution takes the form:
X = c 1 e λ t v + c 2 e λ t ( t v + u ) X=c_1e^{\lambda t}v+c_2e^{\lambda t}(tv+u) X = c 1 e λ t v + c 2 e λ t ( t v + u ) where u u u is a solution to ( A − λ I ) u = v (A-\lambda I)u=v ( A − λ I ) u = v . We can see that:
u = ( 1 , 0 ) u=(1,0) u = ( 1 , 0 ) Finally, the solution is:
X = c 1 e 2 t [ − 1 1 ] + c 2 e 2 t ( t + [ − 1 1 ] + [ 1 0 ] ) . X=c_1e^{2t}\begin{bmatrix}
-1 \\
1
\end{bmatrix}+c_2e^{2t}\left( t+\begin{bmatrix}
-1 \\
1
\end{bmatrix}+\begin{bmatrix}
1 \\
0
\end{bmatrix}\right). X = c 1 e 2 t [ − 1 1 ] + c 2 e 2 t ( t + [ − 1 1 ] + [ 1 0 ] ) .
Comments