We can express the system in the form "X'=AX" , where:
"X=\\begin{bmatrix}\n x \\\\\n y\n\\end{bmatrix},\\quad X'=\\begin{bmatrix}\n x' \\\\\n y'\n\\end{bmatrix},\\quad A=\\begin{bmatrix}\n 1 & -1 \\\\\n 1 & 3\n\\end{bmatrix}" We found a normal-shaped Jordan matrix similar to the original:
"|A-\\lambda I|=\\begin{vmatrix}\n 1-\\lambda & -1 \\\\\n 1 & 3-\\lambda\n\\end{vmatrix}=(\\lambda -2)^2"Therefore, its eigenvalue is "\\lambda=2" with algebraic multiplicity "2".
We find the eigenvectors of eigenvalue "\\lambda=2":
"v=(-1,1)"We know that for repeated real eigenvalues "\\lambda" with multiplicity "2" and eigenvector "v" , the general solution takes the form:
"X=c_1e^{\\lambda t}v+c_2e^{\\lambda t}(tv+u)" where "u" is a solution to "(A-\\lambda I)u=v". We can see that:
"u=(1,0)" Finally, the solution is:
"X=c_1e^{2t}\\begin{bmatrix}\n -1 \\\\\n 1\n\\end{bmatrix}+c_2e^{2t}\\left( t+\\begin{bmatrix}\n -1 \\\\\n 1\n\\end{bmatrix}+\\begin{bmatrix}\n 1 \\\\\n 0\n\\end{bmatrix}\\right)."
Comments
Leave a comment