Question #183351

dx/dt=x-y

dy/dt=x+3y


1
Expert's answer
2021-04-29T16:28:33-0400

We can express the system in the form X=AXX'=AX , where:


X=[xy],X=[xy],A=[1113]X=\begin{bmatrix} x \\ y \end{bmatrix},\quad X'=\begin{bmatrix} x' \\ y' \end{bmatrix},\quad A=\begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}

We found a normal-shaped Jordan matrix similar to the original:


AλI=1λ113λ=(λ2)2|A-\lambda I|=\begin{vmatrix} 1-\lambda & -1 \\ 1 & 3-\lambda \end{vmatrix}=(\lambda -2)^2

Therefore, its eigenvalue is λ=2\lambda=2 with algebraic multiplicity 22.

We find the eigenvectors of eigenvalue λ=2\lambda=2:


v=(1,1)v=(-1,1)

We know that for repeated real eigenvalues λ\lambda with multiplicity 22 and eigenvector vv , the general solution takes the form:


X=c1eλtv+c2eλt(tv+u)X=c_1e^{\lambda t}v+c_2e^{\lambda t}(tv+u)

where uu is a solution to (AλI)u=v(A-\lambda I)u=v. We can see that:


u=(1,0)u=(1,0)

Finally, the solution is:


X=c1e2t[11]+c2e2t(t+[11]+[10]).X=c_1e^{2t}\begin{bmatrix} -1 \\ 1 \end{bmatrix}+c_2e^{2t}\left( t+\begin{bmatrix} -1 \\ 1 \end{bmatrix}+\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS