x^3*dy/dx – x^2*y = – y^4*cosx
"x^3\\frac{dy}{dx}-x^2y=-y^4\\cos{x}"
Solution:
Divide the left and right sides of the equation by "x^2y^4" :
"\\frac{x}{y^4}\\frac{dy}{dx}-\\frac{1}{y^3}=-\\frac{\\cos{x}}{x^2}"
"\\frac{1}{y^3}=z" , "z'=-3\\frac{y'}{y^4}" , "\\frac{y'}{y^4}=-\\frac{z'}{3}" .
"x(-\\frac{z'}{3})-z=-\\frac{\\cos{x}}{x^2}"
"x\\frac{z'}{3}+z=\\frac{\\cos{x}}{x^2}"
"z=uv" , "z'=u'v+v'u"
"x\\frac{u'v+v'u}{3}+uv=\\frac{\\cos{x}}{x^2}"
"x\\frac{u'v}{3}+u(\\frac x3v'+v)=\\frac{\\cos{x}}{x^2}"
Let's compose and solve the system:
"\\begin{cases}\n \\frac x3v'+v=0 \\\\\n x\\frac{u'v}{3}=\\frac{\\cos{x}}{x^2} \n\\end{cases}"
From the first equation:
"\\frac{dv}{v}=-3\\frac{dx}{x}"
"\\ln|v|=-3\\ln|x|"
"v=\\frac{1}{x^3}"
Substitute "v" into the second equation:
"x\\frac{u'}{3x^3}=\\frac{\\cos{x}}{x^2}"
"u'=3\\cos{x}"
"u=3\\sin{x}+C"
"z=uv=\\frac{1}{x^3}(3\\sin{x}+C)"
"\\frac{1}{y^3}=\\frac{1}{x^3}(3\\sin{x}+C)"
"y^3=\\frac{x^3}{3\\sin{x}+C}"
Answer: "y^3=\\frac{x^3}{3\\sin{x}+C}" .
Comments
Leave a comment