x3dxdy−x2y=−y4cosx
Solution:
Divide the left and right sides of the equation by x2y4 :
y4xdxdy−y31=−x2cosx
y31=z , z′=−3y4y′ , y4y′=−3z′ .
x(−3z′)−z=−x2cosx
x3z′+z=x2cosx
z=uv , z′=u′v+v′u
x3u′v+v′u+uv=x2cosx
x3u′v+u(3xv′+v)=x2cosx
Let's compose and solve the system:
{3xv′+v=0x3u′v=x2cosx
From the first equation:
vdv=−3xdx
ln∣v∣=−3ln∣x∣
v=x31
Substitute v into the second equation:
x3x3u′=x2cosx
u′=3cosx
u=3sinx+C
z=uv=x31(3sinx+C)
y31=x31(3sinx+C)
y3=3sinx+Cx3
Answer: y3=3sinx+Cx3 .
Comments