Question #162382

x^3*dy/dx – x^2*y = – y^4*cosx


1
Expert's answer
2021-02-24T07:10:56-0500

x3dydxx2y=y4cosxx^3\frac{dy}{dx}-x^2y=-y^4\cos{x}

Solution:

Divide the left and right sides of the equation by x2y4x^2y^4 :

xy4dydx1y3=cosxx2\frac{x}{y^4}\frac{dy}{dx}-\frac{1}{y^3}=-\frac{\cos{x}}{x^2}

1y3=z\frac{1}{y^3}=z , z=3yy4z'=-3\frac{y'}{y^4} , yy4=z3\frac{y'}{y^4}=-\frac{z'}{3} .

x(z3)z=cosxx2x(-\frac{z'}{3})-z=-\frac{\cos{x}}{x^2}

xz3+z=cosxx2x\frac{z'}{3}+z=\frac{\cos{x}}{x^2}

z=uvz=uv , z=uv+vuz'=u'v+v'u

xuv+vu3+uv=cosxx2x\frac{u'v+v'u}{3}+uv=\frac{\cos{x}}{x^2}

xuv3+u(x3v+v)=cosxx2x\frac{u'v}{3}+u(\frac x3v'+v)=\frac{\cos{x}}{x^2}

Let's compose and solve the system:

{x3v+v=0xuv3=cosxx2\begin{cases} \frac x3v'+v=0 \\ x\frac{u'v}{3}=\frac{\cos{x}}{x^2} \end{cases}

From the first equation:

dvv=3dxx\frac{dv}{v}=-3\frac{dx}{x}

lnv=3lnx\ln|v|=-3\ln|x|

v=1x3v=\frac{1}{x^3}

Substitute vv into the second equation:

xu3x3=cosxx2x\frac{u'}{3x^3}=\frac{\cos{x}}{x^2}

u=3cosxu'=3\cos{x}

u=3sinx+Cu=3\sin{x}+C

z=uv=1x3(3sinx+C)z=uv=\frac{1}{x^3}(3\sin{x}+C)

1y3=1x3(3sinx+C)\frac{1}{y^3}=\frac{1}{x^3}(3\sin{x}+C)

y3=x33sinx+Cy^3=\frac{x^3}{3\sin{x}+C}

Answer: y3=x33sinx+Cy^3=\frac{x^3}{3\sin{x}+C} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS