y(x)=k=0∑∞akxk , y′(x)=k=1∑∞kakxk−1 , y(n)(x)=k=n∑∞(k−n)!k!akxk−n
x2k=n∑∞(k−n)!k!akxk−n−2x(x+1)k=1∑∞kakxk−1+2(x+1)k=0∑∞akxk=x3
k=n∑∞(k−n)!k!akxk−n+2−2k=1∑∞kakxk+1−2k=1∑∞kakxk+
+2k=0∑∞akxk+1+2k=0∑∞akxk=x3
k=2∑∞(k−2)!(k+n−2)!ak+n−2xk−2k=2∑∞(k−1)ak−1xk−2k=1∑∞kakxk+
+2k=1∑∞ak−1xk+2k=0∑∞akxk=x3
k=0⟹2a0=0⟹a0=0
k=2⟹n!an−2a1−4a2+2a1+2a2=0
an=n!2a2⟹a2=n!an/2
k=3⟹(n+1)!an+1−4a2−6a3+2a2+2a3=1
a3=4(n+1)!an+1−n!an−1
k>3⟹(k−2)!(k+n−2)!ak+n−2+2ak−1(2−k)+2ak(1−k)=0
ak=2(k−1)(k−2)!(k+n−2)!ak+n−2+2ak−1(2−k)
y(x)=a1x+2ann!x2+4(n+1)!an+1−n!an−1x3+...+2(k−1)(k−2)!(k+n−2)!ak+n−2+2ak−1(2−k)xk
Comments