x^2 y^n-2x(1+x)y'+2(1+x)y=x^3
"y(x)=\\displaystyle\\sum_{k=0}^{\\infin}a_kx^k" , "y'(x)=\\displaystyle\\sum_{k=1}^{\\infin}ka_kx^{k-1}" , "y^{(n)}(x)=\\displaystyle\\sum_{k=n}^{\\infin}\\frac{k!}{(k-n)!}a_kx^{k-n}"
"x^2\\displaystyle\\sum_{k=n}^{\\infin}\\frac{k!}{(k-n)!}a_kx^{k-n}-2x(x+1)\\displaystyle\\sum_{k=1}^{\\infin}ka_kx^{k-1}+2(x+1)\\displaystyle\\sum_{k=0}^{\\infin}a_kx^k=x^3"
"\\displaystyle\\sum_{k=n}^{\\infin}\\frac{k!}{(k-n)!}a_kx^{k-n+2}-2\\displaystyle\\sum_{k=1}^{\\infin}ka_kx^{k+1}-2\\displaystyle\\sum_{k=1}^{\\infin}ka_kx^{k}+"
"+2\\displaystyle\\sum_{k=0}^{\\infin}a_kx^{k+1}+2\\displaystyle\\sum_{k=0}^{\\infin}a_kx^k=x^3"
"\\displaystyle\\sum_{k=2}^{\\infin}\\frac{(k+n-2)!}{(k-2)!}a_{k+n-2}x^{k}-2\\displaystyle\\sum_{k=2}^{\\infin}(k-1)a_{k-1}x^{k}-2\\displaystyle\\sum_{k=1}^{\\infin}ka_kx^{k}+"
"+2\\displaystyle\\sum_{k=1}^{\\infin}a_{k-1}x^{k}+2\\displaystyle\\sum_{k=0}^{\\infin}a_kx^k=x^3"
"k=0\\implies 2a_0=0\\implies a_0=0"
"k=2\\implies n!a_n-2a_1-4a_2+2a_1+2a_2=0"
"a_n=\\frac{2a_2}{n!}\\implies a_2=n!a_n\/2"
"k=3\\implies (n+1)!a_{n+1}-4a_2-6a_3+2a_2+2a_3=1"
"a_3=\\frac{(n+1)!a_{n+1}-n!a_n-1}{4}"
"k>3\\implies \\frac{(k+n-2)!}{(k-2)!}a_{k+n-2}+2a_{k-1}(2-k)+2a_k(1-k)=0"
"a_k=\\frac{\\frac{(k+n-2)!}{(k-2)!}a_{k+n-2}+2a_{k-1}(2-k)}{2(k-1)}"
"y(x)=a_1x+\\frac{a_nn!}{2}x^2+\\frac{(n+1)!a_{n+1}-n!a_n-1}{4}x^3+...+\\frac{\\frac{(k+n-2)!}{(k-2)!}a_{k+n-2}+2a_{k-1}(2-k)}{2(k-1)}x^k"
Comments
Leave a comment