Question #162083

x^2 y^n-2x(1+x)y'+2(1+x)y=x^3


1
Expert's answer
2021-02-24T07:36:16-0500

y(x)=k=0akxky(x)=\displaystyle\sum_{k=0}^{\infin}a_kx^k , y(x)=k=1kakxk1y'(x)=\displaystyle\sum_{k=1}^{\infin}ka_kx^{k-1} , y(n)(x)=k=nk!(kn)!akxkny^{(n)}(x)=\displaystyle\sum_{k=n}^{\infin}\frac{k!}{(k-n)!}a_kx^{k-n}


x2k=nk!(kn)!akxkn2x(x+1)k=1kakxk1+2(x+1)k=0akxk=x3x^2\displaystyle\sum_{k=n}^{\infin}\frac{k!}{(k-n)!}a_kx^{k-n}-2x(x+1)\displaystyle\sum_{k=1}^{\infin}ka_kx^{k-1}+2(x+1)\displaystyle\sum_{k=0}^{\infin}a_kx^k=x^3


k=nk!(kn)!akxkn+22k=1kakxk+12k=1kakxk+\displaystyle\sum_{k=n}^{\infin}\frac{k!}{(k-n)!}a_kx^{k-n+2}-2\displaystyle\sum_{k=1}^{\infin}ka_kx^{k+1}-2\displaystyle\sum_{k=1}^{\infin}ka_kx^{k}+


+2k=0akxk+1+2k=0akxk=x3+2\displaystyle\sum_{k=0}^{\infin}a_kx^{k+1}+2\displaystyle\sum_{k=0}^{\infin}a_kx^k=x^3


k=2(k+n2)!(k2)!ak+n2xk2k=2(k1)ak1xk2k=1kakxk+\displaystyle\sum_{k=2}^{\infin}\frac{(k+n-2)!}{(k-2)!}a_{k+n-2}x^{k}-2\displaystyle\sum_{k=2}^{\infin}(k-1)a_{k-1}x^{k}-2\displaystyle\sum_{k=1}^{\infin}ka_kx^{k}+


+2k=1ak1xk+2k=0akxk=x3+2\displaystyle\sum_{k=1}^{\infin}a_{k-1}x^{k}+2\displaystyle\sum_{k=0}^{\infin}a_kx^k=x^3


k=0    2a0=0    a0=0k=0\implies 2a_0=0\implies a_0=0

k=2    n!an2a14a2+2a1+2a2=0k=2\implies n!a_n-2a_1-4a_2+2a_1+2a_2=0

an=2a2n!    a2=n!an/2a_n=\frac{2a_2}{n!}\implies a_2=n!a_n/2

k=3    (n+1)!an+14a26a3+2a2+2a3=1k=3\implies (n+1)!a_{n+1}-4a_2-6a_3+2a_2+2a_3=1

a3=(n+1)!an+1n!an14a_3=\frac{(n+1)!a_{n+1}-n!a_n-1}{4}

k>3    (k+n2)!(k2)!ak+n2+2ak1(2k)+2ak(1k)=0k>3\implies \frac{(k+n-2)!}{(k-2)!}a_{k+n-2}+2a_{k-1}(2-k)+2a_k(1-k)=0

ak=(k+n2)!(k2)!ak+n2+2ak1(2k)2(k1)a_k=\frac{\frac{(k+n-2)!}{(k-2)!}a_{k+n-2}+2a_{k-1}(2-k)}{2(k-1)}


y(x)=a1x+ann!2x2+(n+1)!an+1n!an14x3+...+(k+n2)!(k2)!ak+n2+2ak1(2k)2(k1)xky(x)=a_1x+\frac{a_nn!}{2}x^2+\frac{(n+1)!a_{n+1}-n!a_n-1}{4}x^3+...+\frac{\frac{(k+n-2)!}{(k-2)!}a_{k+n-2}+2a_{k-1}(2-k)}{2(k-1)}x^k



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS