dy/dx=x+3y-5/x-y-1
"\\displaystyle\\frac{dy}{dx}=\\frac{x+3y-5}{x-y-1}"
Solution:
Introduce replacements: "x=x_0+t" and "y=y_0+z" , where "x_0" and "y_0" are solutions of the system of equations:
"\\begin{cases}\n x_0+3y_0-5=0 \\\\\n x_0-y_0-1=0 \n\\end{cases}"
"x_0=2" , "y_0=1" .
Substitute "x=2+t" and "y=1+z" into the initial equation:
"\\displaystyle\\frac{dy}{dx}=\\frac{\\frac{dy}{dt}}{\\frac{dx}{dt}}=\\frac{dz}{dt}=\\frac{2+t+3(1+z)-5}{2+t-(1+z)-1}"
"\\displaystyle\\frac{dz}{dt}=\\frac{t+3z}{t-z}"
Now introduce another replacement: "z=ut" . Then "\\frac{dz}{dt}=\\frac{du}{dt}t+u" .
"\\displaystyle\\frac{du}{dt}t+u=\\frac{t+3ut}{t-ut}"
"\\displaystyle\\frac{du}{dt}t=\\frac{1+3u}{1-u}-u=\\frac{1+3u-u+u^2}{1-u}=\\frac{(1+u)^2}{1-u}"
"\\displaystyle\\frac{1-u}{(1+u)^2}du=\\frac{dt}{t}"
"\\displaystyle-\\frac{(u+1-2)}{(1+u)^2}du=\\frac{dt}{t}"
"\\displaystyle(-\\frac{1}{1+u}+\\frac{2}{(1+u)^2})du=\\frac{dt}{t}"
"\\displaystyle-\\ln|1+u|-\\frac{2}{1+u}=\\ln{|t|}+\\ln{C}"
"\\displaystyle(1+u)\\cdot t\\cdot C=e^{-\\frac{2}{1+u}}" .
Returning to replacements: "z=y-1" , "t=x-2" and "\\displaystyle u=\\frac{z}{t}=\\frac{y-1}{x-2}"
"\\displaystyle(1+\\frac{y-1}{x-2})(x-2)\\cdot C=e^{-\\frac{2}{1+\\frac{y-1}{x-2}}}"
"\\displaystyle(x+y-3)\\cdot C=e^{-\\frac{2(x-2)}{x+y-3}}"
Answer: "\\displaystyle(x+y-3)\\cdot C=e^{-\\frac{2(x-2)}{x+y-3}}" .
Comments
Leave a comment