dxdy=x−y−1x+3y−5
Solution:
Introduce replacements: x=x0+t and y=y0+z , where x0 and y0 are solutions of the system of equations:
{x0+3y0−5=0x0−y0−1=0
x0=2 , y0=1 .
Substitute x=2+t and y=1+z into the initial equation:
dxdy=dtdxdtdy=dtdz=2+t−(1+z)−12+t+3(1+z)−5
dtdz=t−zt+3z
Now introduce another replacement: z=ut . Then dtdz=dtdut+u .
dtdut+u=t−utt+3ut
dtdut=1−u1+3u−u=1−u1+3u−u+u2=1−u(1+u)2
(1+u)21−udu=tdt
−(1+u)2(u+1−2)du=tdt
(−1+u1+(1+u)22)du=tdt
−ln∣1+u∣−1+u2=ln∣t∣+lnC
(1+u)⋅t⋅C=e−1+u2 .
Returning to replacements: z=y−1 , t=x−2 and u=tz=x−2y−1
(1+x−2y−1)(x−2)⋅C=e−1+x−2y−12
(x+y−3)⋅C=e−x+y−32(x−2)
Answer: (x+y−3)⋅C=e−x+y−32(x−2) .
Comments