Question #161534

dy/dx=x+3y-5/x-y-1


1
Expert's answer
2021-02-24T06:32:02-0500

dydx=x+3y5xy1\displaystyle\frac{dy}{dx}=\frac{x+3y-5}{x-y-1}

Solution:

Introduce replacements: x=x0+tx=x_0+t and y=y0+zy=y_0+z , where x0x_0 and y0y_0 are solutions of the system of equations:

{x0+3y05=0x0y01=0\begin{cases} x_0+3y_0-5=0 \\ x_0-y_0-1=0 \end{cases}

x0=2x_0=2 , y0=1y_0=1 .

Substitute x=2+tx=2+t and y=1+zy=1+z into the initial equation:

dydx=dydtdxdt=dzdt=2+t+3(1+z)52+t(1+z)1\displaystyle\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{dz}{dt}=\frac{2+t+3(1+z)-5}{2+t-(1+z)-1}

dzdt=t+3ztz\displaystyle\frac{dz}{dt}=\frac{t+3z}{t-z}

Now introduce another replacement: z=utz=ut . Then dzdt=dudtt+u\frac{dz}{dt}=\frac{du}{dt}t+u .

dudtt+u=t+3uttut\displaystyle\frac{du}{dt}t+u=\frac{t+3ut}{t-ut}

dudtt=1+3u1uu=1+3uu+u21u=(1+u)21u\displaystyle\frac{du}{dt}t=\frac{1+3u}{1-u}-u=\frac{1+3u-u+u^2}{1-u}=\frac{(1+u)^2}{1-u}

1u(1+u)2du=dtt\displaystyle\frac{1-u}{(1+u)^2}du=\frac{dt}{t}

(u+12)(1+u)2du=dtt\displaystyle-\frac{(u+1-2)}{(1+u)^2}du=\frac{dt}{t}

(11+u+2(1+u)2)du=dtt\displaystyle(-\frac{1}{1+u}+\frac{2}{(1+u)^2})du=\frac{dt}{t}

ln1+u21+u=lnt+lnC\displaystyle-\ln|1+u|-\frac{2}{1+u}=\ln{|t|}+\ln{C}

(1+u)tC=e21+u\displaystyle(1+u)\cdot t\cdot C=e^{-\frac{2}{1+u}} .

Returning to replacements: z=y1z=y-1 , t=x2t=x-2 and u=zt=y1x2\displaystyle u=\frac{z}{t}=\frac{y-1}{x-2}

(1+y1x2)(x2)C=e21+y1x2\displaystyle(1+\frac{y-1}{x-2})(x-2)\cdot C=e^{-\frac{2}{1+\frac{y-1}{x-2}}}

(x+y3)C=e2(x2)x+y3\displaystyle(x+y-3)\cdot C=e^{-\frac{2(x-2)}{x+y-3}}

Answer: (x+y3)C=e2(x2)x+y3\displaystyle(x+y-3)\cdot C=e^{-\frac{2(x-2)}{x+y-3}} .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS