4x+3y+15dy=2x+y+7−dx=4x+3y+15+λ(2x+y+7)dy−λdx
=(λ+3)y+(2λ+4)x+7λ+15d(y−λx)
=(λ+3)(λ+3)y+(2λ+4)x+7λ+15d((λ+3)y−λ(λ+3)x)
For consistency in numerator and denominator
−λ(λ+3)=2λ+4⟹
λ2+5λ+4=0⟹λ=−1or−4
Equating two ratios with the two λ’s
(−1+3)(−1+3)y+(2⋅−1+4)x+7⋅−1+15d((−1+3)y−(−1)(−1+3)x)=(−4+3)(−4+3)y+(2⋅−4+4)x+7⋅−4+15d((−4+3)y−(−4)(−4+3)x)
22y+2x+8d(2y+2x+8)=−1−y−4x−13d(−y−4x−13)
y+x+4d(y+x+4)+2y+4x+13d(y+4x+13)=0
Integrating,
ln(y+x+4)+2ln(y+4x+13)+lnC
(y+x+4)(y+4x+13)2=C
Verification
since my answer is at variance to other answers it needs verification.
Differentiating (1)
2(y+x+4)(dy+4dx)+(y+4x+13)(dy+dx)=0
(2y+2x+8+y+4x+30dy+(8y+8x+32++y+4x+13)dx=0
(6x+3y+21)dy+(12x+9y+45)dx=0
(2x+y+7)dy+(4x+3y+15)dx=0
Verified.
Comments