y'=(4x+3y+15)/(2x+y+7)
"\\frac{dy}{4x+3y+15}=\\frac{\u2212dx}{2x+y+7}=\\frac{dy\u2212\u03bbdx}{4x+3y+15+\u03bb(2x+y+7)}"
"=\\frac{d(y\u2212\u03bbx)}{(\u03bb+3)y+(2\u03bb+4)x+7\u03bb+15}"
"=\\frac{d((\u03bb+3)y\u2212\u03bb(\u03bb+3)x)}{(\u03bb+3){(\u03bb+3)y+(2\u03bb+4)x+7\u03bb+15}}"
For consistency in numerator and denominator
"\u2212\u03bb(\u03bb+3)=2\u03bb+4\u27f9"
"\u03bb2+5\u03bb+4=0\u27f9\u03bb=\u22121or\u22124"
Equating two ratios with the two "\u03bb \u2019s"
"\\frac{d((\u22121+3)y\u2212(\u22121)(\u22121+3)x)}{(\u22121+3){(\u22121+3)y+(2\u22c5\u22121+4)x+7\u22c5\u22121+15}}=\\frac{d((\u22124+3)y\u2212(\u22124)(\u22124+3)x)}{(\u22124+3){(\u22124+3)y+(2\u22c5\u22124+4)x+7\u22c5\u22124+15}}"
"\\frac{d(2y+2x+8)}{2{2y+2x+8}}=\\frac{d(\u2212y\u22124x\u221213)}{\u22121{\u2212y\u22124x\u221213}}"
"\\frac{d(y+x+4)}{{y+x+4}}+2\\frac{d(y+4x+13)}{{y+4x+13}}=0"
Integrating,
"ln(y+x+4)+2ln(y+4x+13)+lnC"
"(y+x+4)(y+4x+13)2=C"
Verification
since my answer is at variance to other answers it needs verification.
Differentiating (1)
"2(y+x+4)(dy+4dx)+(y+4x+13)(dy+dx)=0"
"(2y+2x+8+y+4x+30dy+(8y+8x+32++y+4x+13)dx=0"
"(6x+3y+21)dy+(12x+9y+45)dx=0"
"(2x+y+7)dy+(4x+3y+15)dx=0"
Verified.
Comments
Leave a comment