Question #161533

y'=(4x+3y+15)/(2x+y+7)


1
Expert's answer
2021-02-24T06:31:54-0500

dy4x+3y+15=dx2x+y+7=dyλdx4x+3y+15+λ(2x+y+7)\frac{dy}{4x+3y+15}=\frac{−dx}{2x+y+7}=\frac{dy−λdx}{4x+3y+15+λ(2x+y+7)}

=d(yλx)(λ+3)y+(2λ+4)x+7λ+15=\frac{d(y−λx)}{(λ+3)y+(2λ+4)x+7λ+15}

=d((λ+3)yλ(λ+3)x)(λ+3)(λ+3)y+(2λ+4)x+7λ+15=\frac{d((λ+3)y−λ(λ+3)x)}{(λ+3){(λ+3)y+(2λ+4)x+7λ+15}}

For consistency in numerator and denominator

λ(λ+3)=2λ+4−λ(λ+3)=2λ+4⟹

λ2+5λ+4=0λ=1or4λ2+5λ+4=0⟹λ=−1or−4

Equating two ratios with the two λsλ ’s

d((1+3)y(1)(1+3)x)(1+3)(1+3)y+(21+4)x+71+15=d((4+3)y(4)(4+3)x)(4+3)(4+3)y+(24+4)x+74+15\frac{d((−1+3)y−(−1)(−1+3)x)}{(−1+3){(−1+3)y+(2⋅−1+4)x+7⋅−1+15}}=\frac{d((−4+3)y−(−4)(−4+3)x)}{(−4+3){(−4+3)y+(2⋅−4+4)x+7⋅−4+15}}

d(2y+2x+8)22y+2x+8=d(y4x13)1y4x13\frac{d(2y+2x+8)}{2{2y+2x+8}}=\frac{d(−y−4x−13)}{−1{−y−4x−13}}

d(y+x+4)y+x+4+2d(y+4x+13)y+4x+13=0\frac{d(y+x+4)}{{y+x+4}}+2\frac{d(y+4x+13)}{{y+4x+13}}=0

Integrating,

ln(y+x+4)+2ln(y+4x+13)+lnCln(y+x+4)+2ln(y+4x+13)+lnC

(y+x+4)(y+4x+13)2=C(y+x+4)(y+4x+13)2=C

Verification

since my answer is at variance to other answers it needs verification.

Differentiating (1)

2(y+x+4)(dy+4dx)+(y+4x+13)(dy+dx)=02(y+x+4)(dy+4dx)+(y+4x+13)(dy+dx)=0

(2y+2x+8+y+4x+30dy+(8y+8x+32++y+4x+13)dx=0(2y+2x+8+y+4x+30dy+(8y+8x+32++y+4x+13)dx=0

(6x+3y+21)dy+(12x+9y+45)dx=0(6x+3y+21)dy+(12x+9y+45)dx=0

(2x+y+7)dy+(4x+3y+15)dx=0(2x+y+7)dy+(4x+3y+15)dx=0

Verified.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS