Question #140382
(2y^2-4x+5)dx+(4-2y+4xy)dy=0
For exactness, and solve it if it is exact.
1
Expert's answer
2020-10-26T19:59:38-0400

Given

(2y24x+5)dx+(42y+4xy)dy=0(2y^2-4x+5)dx+(4-2y+4xy)dy=0

Let M(x,y)=2y24x+5M(x,y)=2y^2-4x+5 and N(x,y)=42y+4xyN(x,y)=4-2y+4xy

Thus, differential equation becomes

Mdx+Ndy=0Mdx+Ndy=0

Now, to check exactness we have to check

yM=xN\partial_yM=\partial_xN

or not.

In this case ,


yM=4y=xN\partial_yM=4y=\partial_xN

Thus,

(2y24x+5)dx+(42y+4xy)dy=0(2y^2-4x+5)dx+(4-2y+4xy)dy=0

is exact differential equation.

Thus,


(2y24x+5)dx+(42y+4xy)dy=0    (4x+5)dx+(42y)dy+d(2xy2)=0    (4x+5)dx+(42y)dy+d(2xy2)=C    2x2+5x+4yy2+2xy2=C(2y^2-4x+5)dx+(4-2y+4xy)dy=0\\ \implies (-4x+5)dx+(4-2y)dy+d(2xy^2)=0\\ \implies \int(-4x+5)dx+\int(4-2y)dy+\int d(2xy^2)=C\\ \implies -2x^2+5x+4y-y^2+2xy^2=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
14.04.21, 00:10

Dear Gladys Hernández, please use the panel for submitting new questions.

Gladys Hernández
12.04.21, 22:04

(2y^2-4x+5)+(2y+4xy-4)=0

LATEST TUTORIALS
APPROVED BY CLIENTS