The given partial differential equation isp−qyln(y)=zln(y)dz=∂x∂zdx+∂y∂zdydx=1,dy=−yln(y),dz=zln(y)The Lagrange’s auxiliary equationsfor the given PDE is1dx=−yln(y)dy=zln(y)dzChoosing(0,y1,z1)as multipliers, we havey1dy+z1dz=0Integrating both sides, we have∫y1dy−∫z1dz=C1ln(y)−ln(z)=C1ln(zy)=C1∴zy=C2,{whereC2=eC1}Choosing(1,yln(y)1,0)as multipliers, we havedx+yln(y)dy=0Integrating both sides, we have∫dx+∫yln(y)dy=C3x+∫ln(y)d(ln(y))==C3x+ln(ln(y))=C3ln(exln(y))=C3exln(y)=C4{whereC4=eC3}So, the solution of the given PDE isϕ(exln(y),zy)=0
Comments