Using the method of vibration of parameters,solve the equation
d^2y/dx^2 +a^2y =secax
1
Expert's answer
2020-10-14T13:53:32-0400
dx2d2y+a2y=sec(ax)The solution to the above equation isy=yc+ypwhereycis the complementary factor andyp is the particular integralThe auxiliary equation ism2+a2=0(m−ja)(m+ja)∴m=0=±ja{wherejis a complex number}Recall that if the solution of the auxiliary equationof a second-order differential equation ism=α±jβ,the general solution isy=eαx(C1cosβx+C2sinβx)∴yc=C1cos(ax)+C2sin(ax)The Wronskian of the two solutions isW(x)=∣∣cos(ax)dxd(cos(ax))sin(ax)dxd(sin(ax))∣∣=∣∣cos(ax)−asin(ax)sin(ax)acos(ax)∣∣=acos2(ax)+asin2(ax)=a(cos2(ax)+sin2(ax))=a∴Our particular solution will be given byyp=V1(x)cos(ax)+V2(x)sin(ax)WhereV1(x)=−∫W(x)r(x)sin(ax)dxandV2(x)=∫W(x)r(x)cos(ax)dxV1(x)=−∫W(x)r(x)sin(ax)dx=−∫asec(ax)sin(ax)dx=−∫atan(ax)dx=−a2ln(sec(ax))+CV2(x)=∫W(x)r(x)cos(ax)dx=∫asec(ax)cos(ax)dx=∫a1dx=ax+CThe constant terms of the integration can beignored since we are trying to find a non-constantsolution to the differential equation∴y=yc+yp=C1cos(ax)+C2sin(ax)+axsin(ax)−a21ln(sec(ax))cos(ax)
Comments