Question #137178
Solve the following differential equation:

x^2 d^2y/dx^2 - x dy/dx + 4y = cos(logx) + x sin(logx)
1
Expert's answer
2021-05-11T09:01:10-0400

x2yxy+4y=cos(logx)+xsin(logx)x=et,y=etyt,y=e2t(ytyt)e2te2t(ytyt)etetyt+4y=cost+etsintyt2yt+4y=cost+etsintx^2 y''-xy'+4y=cos(logx)+xsin(logx)\\ x=e^t, y'=e^{-t}y'_t , y''=e^{-2t}(y''_t-y'_t)\\ e^{2t}e^{-2t}(y''_t-y'_t)-e^te^{-t}y'_t +4y=cost+e^tsint\\ y''_t-2y'_t+4y=cost+e^tsint

1)yt2yt+4y=0λ22λ+4=0D=416=12=12i2λ1=223i2=13iλ2=2+23i2=1+3iy1=C1etcos3t+C2etsin3t1) y''_t-2y'_t+4y=0\\ \lambda^2 -2\lambda+4=0\\ D=4-16=-12=12i^2\\ \lambda_1=\frac{2-2\sqrt3 i}{2}=1-\sqrt3 i\\ \lambda_2=\frac{2+2\sqrt3 i}{2}=1+\sqrt3 i\\ y_1=C_1e^tcos\sqrt3 t+C_2e^tsin\sqrt3 t

2)a)f1(t)=costy2=acost+bsinty2=asint+bcosty2=acostbsintacostbsint+2asint2bcost+4acost+4bsint=costcost:a2b+4a=1sint:b+2a+4b=03a2b=12a+3b=0a=313,b=213y2=313cost213sint2) a) f_1(t)=cost\\ y_2=acost+bsint\\ y'_2=-asint+bcost\\ y''_2=-acost-bsint\\ -acost-bsint+2asint-2bcost+4acost+4bsint=cost\\ cost:-a-2b+4a=1\\ sint:-b+2a+4b=0\\ 3a-2b=1\\ 2a+3b=0\\ a=\frac{3}{13}, b=-\frac{2}{13}\\ y_2=\frac{3}{13}cost-\frac{2}{13}sint

b)f2(t)=etsinty3=aetcost+betsint=et(acost+bsint)y3=et(acost+bsint)+et(asint+bcost)==et((a+b)cost+(ba)sint)y3=et((a+b)cost+(ba)sint)++et((a+b)sint+(ba)cost)==et(2bcost2asint)b) f_2(t)=e^tsint\\ y_3=ae^tcost+be^tsint=e^t(acost+bsint)\\ y'_3=e^t(acost+bsint)+e^t(-asint+bcost)=\\ =e^t((a+b)cost+(b-a)sint)\\ y''_3=e^t((a+b)cost+(b-a)sint)+\\ +e^t(-(a+b)sint+(b-a)cost)=\\ =e^t(2bcost-2asint)

et(2bcost2asint)2et((a+b)cost+(ba)sint)++4et(acost+bsint)=etsintcost:2b2(a+b)+4a=0sint:2a2(ba)+4b=1a=0b=12y3=12etsinte^t(2bcost-2asint)-2e^t((a+b)cost+(b-a)sint)+\\ +4e^t(acost+bsint)=e^tsint\\ cost:2b-2(a+b)+4a=0\\ sint:-2a-2(b-a)+4b=1\\ a=0\\ b=\frac{1}{2}\\ y_3=\frac{1}{2}e^tsint\\

y=y1+y2+y3==C1etcos3t+C2etsin3t++313cost213sint+12etsinty=y_1+y_2+y_3=\\ =C_1e^tcos\sqrt3 t+C_2e^tsin\sqrt3 t+\\ +\frac{3}{13}cost-\frac{2}{13}sint+\frac{1}{2}e^tsint

Return to xx

y=C1xcos(3logx)+C2xsin(3logx)++313cos(logx)213sin(logx)+12xsin(logx)y=C_1xcos(\sqrt3 log|x|)+C_2xsin(\sqrt3 log|x|)+\\ +\frac{3}{13}cos(log|x|)-\frac{2}{13}sin(log|x|)+\frac{1}{2}xsin(log|x|)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
24.02.21, 16:47

Dear subham, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

subham
20.02.21, 07:13

this helped me a lot...as same as my teacher explained me OwO tq

LATEST TUTORIALS
APPROVED BY CLIENTS