x2y′′−xy′+4y=cos(logx)+xsin(logx)x=et,y′=e−tyt′,y′′=e−2t(yt′′−yt′)e2te−2t(yt′′−yt′)−ete−tyt′+4y=cost+etsintyt′′−2yt′+4y=cost+etsint
1)yt′′−2yt′+4y=0λ2−2λ+4=0D=4−16=−12=12i2λ1=22−23i=1−3iλ2=22+23i=1+3iy1=C1etcos3t+C2etsin3t
2)a)f1(t)=costy2=acost+bsinty2′=−asint+bcosty2′′=−acost−bsint−acost−bsint+2asint−2bcost+4acost+4bsint=costcost:−a−2b+4a=1sint:−b+2a+4b=03a−2b=12a+3b=0a=133,b=−132y2=133cost−132sint
b)f2(t)=etsinty3=aetcost+betsint=et(acost+bsint)y3′=et(acost+bsint)+et(−asint+bcost)==et((a+b)cost+(b−a)sint)y3′′=et((a+b)cost+(b−a)sint)++et(−(a+b)sint+(b−a)cost)==et(2bcost−2asint)
et(2bcost−2asint)−2et((a+b)cost+(b−a)sint)++4et(acost+bsint)=etsintcost:2b−2(a+b)+4a=0sint:−2a−2(b−a)+4b=1a=0b=21y3=21etsint
y=y1+y2+y3==C1etcos3t+C2etsin3t++133cost−132sint+21etsint
Return to x
y=C1xcos(3log∣x∣)+C2xsin(3log∣x∣)++133cos(log∣x∣)−132sin(log∣x∣)+21xsin(log∣x∣)
Comments
Dear subham, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
this helped me a lot...as same as my teacher explained me OwO tq