Question #137100
P^2z+q^2=1
1
Expert's answer
2020-10-06T18:54:49-0400

This is of the form f(z,p,q)=0.f(z, p, q)=0. Let q=ap.q=ap. f (z,p,q) = 0

The given  equation becomes

p2z+a2p2=1p^2z+a^2p^2=1

p=±1z+a2p=\pm\dfrac{1}{\sqrt{z+a^2}}

q=±az+a2q=\pm\dfrac{a}{\sqrt{z+a^2}}

Since dz=pdx+qdy,dz=pdx+qdy,


dz=±(1z+a2dx+az+a2dy)dz=\pm(\dfrac{1}{\sqrt{z+a^2}}dx+\dfrac{a}{\sqrt{z+a^2}}dy)

z+a2dz=±(dx+ady)\sqrt{z+a^2}dz=\pm(dx+ady)

On integration


23(z+a2)3/2=x+ay+b\dfrac{2}{3}(z+a^2)^{3/2}=x+ay+b

(z+a2)3/2=32x+32ay+b(z+a^2)^{3/2}=\dfrac{3}{2}x+\dfrac{3}{2}ay+b


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS