Let us consider the method from this book (http://scipp.ucsc.edu/~haber/ph116C/Wronskian_12.pdf page 4)
Let the general solution be
y(t)=c1y1(t)+c2y2(t)+yp(t), y1,y2 are the solutions of the homogeneous equation. These solutions may be obtained by the characteristic equation λ2−3λ+2=0,λ1=1,λ2=2⇒y1=et,y2=e2t .
Let us calculate the Wronskian:
W=det(y1y1′y2y2′)=y1y2′−y2y1′=et⋅2e2t−e2t⋅et=e3t.
yp(t)=−y1(t)∫W(t)y2(t)f(t)dt+y2(t)∫W(t)y1(t)f(t)dt==−et∫e3te2t⋅et+1e2tdt+e2t∫e3tet⋅et+1e2tdt=−et∫et+1etdt+e2t∫et+11dt=−etln(et+1)+e2t(t−ln(et+1))=te2t−ln(et+1)⋅(et+e2t).
Therefore, the solution is
y(t)=c1y1(t)+c2y2(t)+yp(t)=c1et+c2e2t+te2t−ln(et+1)⋅(et+e2t).
Comments