Solve by Monge’s method
Comparing the given equation with Rr+Ss+Tt=V,we have R=1,S=a+b,T=ab,V=xy.
Here Monge’s subsidiary equations
Rdpdy+Tdqdx−Vdydx=0
Rdy2−Sdxdy+Tdx2=0
become
dpdy+abdqdx−xydydx=0 (1)
dy2−(a+b)dxdy+abdx2=0 (2) Equation (2) may be factorised as
(dy−bdx)=0 (3)
(dy−adx)=0 (4)
On integration
y−bx=c1 (5)
y−ax=c2 (6) Combining equation (3) with subsidiary equation (1), we get
dp(bdx)+abdqdx−xy(bdx)dx=0
dp+adq−xydx=0 By using (5)
dp+adq−x(c1+bx)dx=0 On integration, we get
p+aq−(2c1)x2−(3b)x3=c3 By using (5)
p+aq−2x2(y−bx)−(3b)x3=c3
p+aq−(21)x2y+(61)bx3=c3 Therefore the first intermediate integral is
p+aq−21x2y+61bx3=f1(y−bx) (7) Similarly, the second intermediate integral corresponding to equation (4) is
p+bq−21x2y+61ax3=f2(y−ax) (8)Now from above two intermediate integrals (7) and (8), we deduce the values of p and q as
q=61x3+a−b1[f1(y−bx)−f2(y−ax)]
p=21x2y−61(a+b)x3+a−b1[af2(y−ax)−bf1(y−bx)] Substituting these values of p and q in dz=pdx+qdy, we get
dz=21x2ydx−61(a+b)x3dx+
+a−b1[af2(y−ax)dx−bf1(y−bx)dx]+
+61x3dy+a−b1[f1(y−bx)dy−f2(y−ax)dy] Or
dz=61(3x2ydx+x3dy)−61(a+b)x3dx−
−b−a1[af2(y−ax)dx−bf1(y−bx)dx]−
−b−a1[f1(y−bx)dy−f2(y−ax)dy] Or
dz=61d(x3y)−61(a+b)x3dx+
+b−a1f2(y−ax)(dy−adx)−
−b−a1f1(y−bx)(dy−bdx) Integrating, we get the required solution as
z=61x3y−241(a+b)x4+ϕ(y−ax)+ϕ1(y−bx)
Comments