Question #137083
Solve the partial differential equation: r+ (a+b)s + abt = xy
1
Expert's answer
2020-10-06T18:53:30-0400

Solve by Monge’s method

Comparing the given equation with Rr+Ss+Tt=V,Rr+Ss+Tt=V,we have R=1,S=a+b,T=ab,V=xy.R=1, S=a+b,T=ab,V=xy.

Here Monge’s subsidiary equations


Rdpdy+TdqdxVdydx=0Rdpdy+Tdqdx-Vdydx=0

Rdy2Sdxdy+Tdx2=0Rdy^2-Sdxdy+Tdx^2=0


become


dpdy+abdqdxxydydx=0          (1)dpdy+abdqdx-xydydx=0 \ \ \ \ \ \ \ \ \ \ (1)

dy2(a+b)dxdy+abdx2=0        (2)dy^2-(a+b)dxdy+abdx^2=0 \ \ \ \ \ \ \ \ (2)

Equation (2)(2) may be factorised as


(dybdx)=0                                    (3)(dy-bdx)=0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (3)

(dyadx)=0                                    (4)(dy-adx)=0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)


On integration


ybx=c1                                           (5)y-bx=c_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (5)

yax=c2                                           (6)y-ax=c_2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)

Combining equation (3) with subsidiary equation (1), we get


dp(bdx)+abdqdxxy(bdx)dx=0dp(bdx)+abdqdx-xy(bdx)dx=0

dp+adqxydx=0dp+adq-xydx=0

By using (5)


dp+adqx(c1+bx)dx=0dp+adq-x(c_1+bx)dx=0

On integration, we get


p+aq(c12)x2(b3)x3=c3p+aq-(\dfrac{c_1}{2})x^2-(\dfrac{b}{3})x^3=c_3

By using (5)


p+aqx22(ybx)(b3)x3=c3p+aq-\dfrac{x^2}{2}(y-bx)-(\dfrac{b}{3})x^3=c_3

p+aq(12)x2y+(16)bx3=c3p+aq-(\dfrac{1}{2})x^2y+(\dfrac{1}{6})bx^3=c_3

Therefore the first intermediate integral is


p+aq12x2y+16bx3=f1(ybx)        (7)p+aq-\dfrac{1}{2}x^2y+\dfrac{1}{6}bx^3=f_1(y-bx)\ \ \ \ \ \ \ \ (7)

Similarly, the second intermediate integral corresponding to equation (4) is


p+bq12x2y+16ax3=f2(yax)        (8)p+bq-\dfrac{1}{2}x^2y+\dfrac{1}{6}ax^3=f_2(y-ax)\ \ \ \ \ \ \ \ (8)

Now from above two intermediate integrals (7) and (8), we deduce the values of p and q as


q=16x3+1ab[f1(ybx)f2(yax)]q=\dfrac{1}{6}x^3+\dfrac{1}{a-b}\big[f_1(y-bx)-f_2(y-ax)\big]

p=12x2y16(a+b)x3+1ab[af2(yax)bf1(ybx)]p=\dfrac{1}{2}x^2y-\dfrac{1}{6}(a+b)x^3+\dfrac{1}{a-b}\big[af_2(y-ax)-bf_1(y-bx)\big]

Substituting these values of pp and qq in dz=pdx+qdy,dz=pdx+qdy, we get


dz=12x2ydx16(a+b)x3dx+dz=\dfrac{1}{2}x^2ydx-\dfrac{1}{6}(a+b)x^3dx+

+1ab[af2(yax)dxbf1(ybx)dx]++\dfrac{1}{a-b}\big[af_2(y-ax)dx-bf_1(y-bx)dx\big]+

+16x3dy+1ab[f1(ybx)dyf2(yax)dy]+\dfrac{1}{6}x^3dy+\dfrac{1}{a-b}\big[f_1(y-bx)dy-f_2(y-ax)dy\big]

Or


dz=16(3x2ydx+x3dy)16(a+b)x3dxdz=\dfrac{1}{6}(3x^2ydx+x^3dy)-\dfrac{1}{6}(a+b)x^3dx-

1ba[af2(yax)dxbf1(ybx)dx]-\dfrac{1}{b-a}\big[af_2(y-ax)dx-bf_1(y-bx)dx\big]-

1ba[f1(ybx)dyf2(yax)dy]-\dfrac{1}{b-a}\big[f_1(y-bx)dy-f_2(y-ax)dy\big]

Or


dz=16d(x3y)16(a+b)x3dx+dz=\dfrac{1}{6}d(x^3y)-\dfrac{1}{6}(a+b)x^3dx+

+1baf2(yax)(dyadx)+\dfrac{1}{b-a}f_2(y-ax)(dy-adx)-

1baf1(ybx)(dybdx)-\dfrac{1}{b-a}f_1(y-bx)(dy-bdx)

Integrating, we get the required solution as


z=16x3y124(a+b)x4+ϕ(yax)+ϕ1(ybx)z=\dfrac{1}{6}x^3y-\dfrac{1}{24}(a+b)x^4+\phi(y-ax)+\phi_1(y-bx)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS