This is a simultaneous TotalDifferential equation.We solve it by Lagrange’s multiplier.(lP+mQ+nR)(ldx+mdy+ndz)=0.lP+mQ+nR=0.Soldx+mdy+ndz=0.Herel,m,nare multipliers.The Lagrange’s auxiliary equationsfor given PDE isx+y−xy2dx=x2y−x−ydy=z(y2−x2)dzChoosing(x,y,z1)as multipliers, we havexdx+ydy+z1dz=0Integrating both sides, we have thus,∫xdx+∫ydy+∫z1dz=0x2+y2+2ln(z)=C1From the first two equations, we have(x2y−x−y)dx−(x+y−xy2)dy=0Solving the above DE, we have(x2y−x)dx−(y−xy2)dy−ydx−xdy=0(x2y−x)dx−(y−xy2)dy=ydx+xdyx(xy−1)dx−y(1−xy)dy=ydx+xdy(xy−1)(xdx+ydy)=ydx+xdyxdx+ydy=xy−1ydx+xdy∫xdx+∫ydy=∫xy−1d(xy)2x2+2y2=log(xy−1)+C22x2+2y2−log(xy−1)=C2Thus, the solution of the given PDE isϕ(x2+y2+2ln(z),2x2+2y2−log(xy−1))=0∀C1,C2∈R
Comments