Question #137047
Solve
dx/x+y-xy^2=dy/x^2-x-y=dz/z(y^2-x^2)
1
Expert's answer
2020-10-09T13:34:21-0400

This is a simultaneous TotalDifferential equation.We solve it by Lagrange’s multiplier.(ldx+mdy+ndz)(lP+mQ+nR)=0.lP+mQ+nR=0.Soldx+mdy+ndz=0.Herel,m,nare multipliers.The Lagrange’s auxiliary equationsfor given PDE isdxx+yxy2=dyx2yxy=dzz(y2x2)Choosing(x,y,1z)as multipliers, we havexdx+ydy+1zdz=0Integrating both sides, we have thus,xdx+ydy+1zdz=0x2+y2+2ln(z)=C1From the first two equations, we have(x2yxy)dx(x+yxy2)dy=0Solving the above DE, we have(x2yx)dx(yxy2)dyydxxdy=0(x2yx)dx(yxy2)dy=ydx+xdyx(xy1)dxy(1xy)dy=ydx+xdy(xy1)(xdx+ydy)=ydx+xdyxdx+ydy=ydx+xdyxy1xdx+ydy=d(xy)xy1x22+y22=log(xy1)+C2x22+y22log(xy1)=C2Thus, the solution of the given PDE isϕ(x2+y2+2ln(z),x22+y22log(xy1))=0C1,C2R\textsf{This is a simultaneous Total}\\\textsf{Differential equation.}\\ \textsf{We solve it by Lagrange's multiplier.}\\ \displaystyle\frac{(l\mathrm{d}x+m\mathrm{d}y +n\mathrm{d}z)}{(l\mathrm{P}+m\mathrm{Q}+n\mathrm{R})} =0.\\ l\mathrm{P}+m\mathrm{Q}+n\mathrm{R} = 0.\hspace{0.1cm}\textsf{So} \hspace{0.1cm}l\mathrm{d}x+m\mathrm{d}y +n\mathrm{d}z =0.\\ \textsf{Here}\hspace{0.1cm} l,m,n \hspace{0.1cm}\textsf{are multipliers.}\\ \textsf{The Lagrange’s auxiliary equations}\\\textsf{for given PDE is}\\ \displaystyle\frac{\mathrm{d}x}{x+y-xy^2}=\frac{\mathrm{d}y}{x^2y-x-y} = \frac{\mathrm{d}z}{z(y^2-x^2)}\\ \displaystyle\textsf{Choosing}\hspace{0.1cm} \left(x,y,\frac{1}{z}\right) \hspace{0.1cm}\\ \textsf{as multipliers, we have}\\ x\mathrm{d}x + y\mathrm{d}y + \frac{1}{z} \mathrm{d}z = 0\\ \textsf{Integrating both sides, we have thus,}\\ \int x\mathrm{d}x + \int y\mathrm{d}y + \int \frac{1}{z} \mathrm{d}z = 0\\ x² + y² + 2\ln(z) = C_1 \\ \textsf{From the first two equations, we have}\\ (x^2y-x-y) \mathrm{d}x - (x+y-xy^2)\mathrm{d}y= 0\\ \textsf{Solving the above DE, we have}\\ (x^2 y - x) \mathrm{d}x - (y - xy^2)\mathrm{d}y - y\mathrm{d}x - x\mathrm{d}y = 0\\ (x^2 y - x) \mathrm{d}x - (y - xy^2)\mathrm{d}y = y\mathrm{d}x + x\mathrm{d}y \\ x(xy - 1) \mathrm{d}x - y(1 - xy)\mathrm{d}y = y\mathrm{d}x + x\mathrm{d}y \\ (xy - 1)(x\mathrm{d}x + y\mathrm{d}y) = y\mathrm{d}x + x\mathrm{d}y \\ \displaystyle x\mathrm{d}x + y\mathrm{d}y = \frac{y\mathrm{d}x + x\mathrm{d}y}{xy - 1}\\ \displaystyle \int x\mathrm{d}x + \int y\mathrm{d}y = \int \frac{\mathrm{d}(xy)}{xy - 1}\\ \displaystyle\frac{x^2}{2} + \frac{y^2}{2} = \log{(xy - 1)} + C_2\\ \displaystyle\frac{x^2}{2} + \frac{y^2}{2} - \log{(xy - 1)} = C_2\\ \textsf{Thus, the solution of the given PDE is}\\ \phi\left(x² + y² + 2\ln(z),\right.\\\left.\frac{x^2}{2} + \frac{y^2}{2} - \log{(xy - 1)}\right) = 0 \hspace{0.2cm}\forall C_1, C_2\in \mathbb{R}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS