The displacement y(x,t) is given by the equation,
d2ydt2=a2d2ydt2\frac{d^2y}{dt^2}=a^2\frac{d^2y}{dt^2}dt2d2y=a2dt2d2y
The boundary condition are:-
i ) y(0,t)= 0 , for t≥0\ge0≥0
ii ) y(l,t)= 0 , for t≥0\ge0≥0
iii) y(x,0)= 0 , for 0≤x≤l0\le x\le l0≤x≤l
iv) [dydt]t=0=kx(l−x),for0≤x≤l[\frac{dy}{dt}]_{t=0}=kx(l-x), for 0\le x\le l[dtdy]t=0=kx(l−x),for0≤x≤l
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments