Question #137025
Solve
(D^4+2D^3-3D^2)y=x^2+3e^2x+4sinx
1
Expert's answer
2020-10-12T18:37:02-0400

Auxiliary equation is D4+2D33D2=0D^4 +2D^3-3D^2 = 0 (1)

Solving it, we get D2(D1)(D+3)=0D^2(D-1)(D+3) = 0

D=0,0,1,3D = 0,0,1,-3

Then y=c1+c2x+c3ex+c4e3xy = c_1+c_2x+c_3e^{x}+c_4e^{-3x}


For particular integral,

For x2x^2,

Let y=ax4+bx3+cx2+dx+ey = ax^4 + bx^3+cx^2 +dx+e be it's solution

then

y=12ax2+6bx+2cy'' = 12ax^2 +6bx +2c

y=24ax+6by''' = 24ax + 6b

y=24ay'''' = 24a

Putting values in equation D4+2D33D2=x2D^4+2D^3-3D^2 = x^2 , we get

36ax2+(48a6b)x+(24a+12b6c)=x2-36ax^2 + (48a-6b)x + (24a+12b-6c) = x^2

comparing powers,

we get a=136,b=227,c=727a = -\frac{1}{36}, b = -\frac{2}{27}, c = -\frac{7}{27}

then P.I. for x2x^2 is, 136x4227x3727x2-\frac{1}{36}x^4 - \frac{2}{27}x^3 - \frac{7}{27}x^2




P.I. for 3e2x3e^{2x} ,

1D4+2D33D2e2x=e2x124+(2×23)(3×22)=320e2x\frac{1}{D^4+2D^3-3D^2}e^{2x} = e^{2x}\frac{1}{2^4+(2\times 2^3)-(3\times 2^2)} = \frac{3}{20}e^{2x}



P.I. for 4sin(x)

1D4+2D33D24sin(x)=1D2(D2+2D3)4sin(x)\frac{1}{D^4+2D^3-3D^2}4sin(x) = \frac{1}{D^2(D^2+2D-3)}4sin(x)

=1(12)(12+2D3)4sin(x)=12D2sin(x)=2(D+2)D24sin(x)= \frac{1}{(-1^2)(-1^2+2D-3)}4sin(x) = \frac{1}{2-D}2sin(x) = -2\frac{(D+2)}{D^2 - 4}sin(x)

=2cos(x)+2sin(x)14=25(cos(x)+2sin(x))= -2\frac{cos(x)+2sin(x)}{-1-4} = \frac{2}{5}(cos(x)+2sin(x))


Solution of the differential equation is

y=c1+c2x+c3ex+c4e3x136x4227x3727x2+320e2x+25(cos(x)+2sin(x))y = c_1+c_2x+c_3e^{x}+c_4e^{-3x}-\frac{1}{36}x^4 - \frac{2}{27}x^3 - \frac{7}{27}x^2+\frac{3}{20}e^{2x} +\frac{2}{5}(cos(x)+2sin(x))



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS