Auxiliary equation is D4+2D3−3D2=0 (1)
Solving it, we get D2(D−1)(D+3)=0
D=0,0,1,−3
Then y=c1+c2x+c3ex+c4e−3x
For particular integral,
For x2,
Let y=ax4+bx3+cx2+dx+e be it's solution
then
y′′=12ax2+6bx+2c
y′′′=24ax+6b
y′′′′=24a
Putting values in equation D4+2D3−3D2=x2 , we get
−36ax2+(48a−6b)x+(24a+12b−6c)=x2
comparing powers,
we get a=−361,b=−272,c=−277
then P.I. for x2 is, −361x4−272x3−277x2
P.I. for 3e2x ,
D4+2D3−3D21e2x=e2x24+(2×23)−(3×22)1=203e2x
P.I. for 4sin(x)
D4+2D3−3D214sin(x)=D2(D2+2D−3)14sin(x)
=(−12)(−12+2D−3)14sin(x)=2−D12sin(x)=−2D2−4(D+2)sin(x)
=−2−1−4cos(x)+2sin(x)=52(cos(x)+2sin(x))
Solution of the differential equation is
y=c1+c2x+c3ex+c4e−3x−361x4−272x3−277x2+203e2x+52(cos(x)+2sin(x))
Comments