Question #137021
Solve
(D^3-DD'^2+D^2+DD')z=(x+2)+e^(x-y)
1
Expert's answer
2020-10-08T15:48:27-0400

The given partial differential equation is

(D3DD2+D2+DD)z=(x+2)+exy(D^3-DD'^2+D^2+DD')z=(x+2)+e^{x-y}


This is non homogeneous linear partial differential equation with constant coefficients .The solution of the given PDE is obtained by finding C.F and P.I

Thus ,solution = C.F + P.I


Calculating C.F


D3DD2+D2+DD=0or,D(D2D2+D+D)=0or,D{(D+D)(DD)+(D+D)}=0or,D(D+D)(DD+1)=0D^3-DD'^2+D^2+DD'=0\\or, D(D^2-D'^2+D+D')=0\\or, D\{(D+D')(D-D')+(D+D')\}=0\\or, D(D+D')(D-D'+1)=0

Now comparing with (Dm1Dc1)(Dm2Dc2)(Dm3Dc3)z=0,we get(D-m_1D'-c_1)(D-m_2D'-c_2)(D-m_3D'-c_3)z=0,we \space get

Rewriting D(D+D)(DD+1)=0 as(D0D0)(D(1)D0)(D1D+1)=0Rewriting \space D(D+D')(D-D'+1)=0 \space as\\(D-0*D'-0)(D-(-1)*D'-0)(D-1*D'+1)=0


m1=0,m2=1,m3=1and c1=0,c2=0,c3=1\therefore m_1=0,m_2=-1,m_3=1\\and \space c_1=0,c_2=0,c_3=1


C.F=e0xf1(y+0x)+e0xf2(yx)+e1xf3(y+x)or,C.F=f1(y+0x)+f2(yx)+exf3(y+x)C.F=e0xf1(y+0x)+e0xf2(yx)+e1xf3(y+x)or,C.F=f1(y)+f2(yx)+exf3(y+x)\therefore C.F = e^{0*x}f_1(y+0*x)+ e^{0*x}f_2(y-x)+e^{1*x}f_3(y+x)\\or, C.F = f_1(y+0*x)+ f_2(y-x)+e^{x}f_3(y+x)\\C.F = e^{0*x}f_1(y+0*x)+ e^{0*x}f_2(y-x)+e^{1*x}f_3(y+x)\\or, C.F = f_1(y)+ f_2(y-x)+e^{x}f_3(y+x)


Calculating P.I


P.I=1f(D,D){exy+x+2}or,P.I=1f(D,D)exy+1f(D,D)(x+2)or,P.I=(P.I)1+(P.I)2P.I = \frac{1}{f(D,D')}\{e^{x-y}+x+2\}\\or, P.I = \frac{1}{f(D,D')}e^{x-y}+\frac{1}{f(D,D')}(x+2)\\or,P.I = (P.I)_1+(P.I)_2


Now,(P.I)1=1f(D,D)exyNow, (P.I)_1 = \frac{1}{f(D,D')}e^{x-y}\\

=1D3DD2+D2+DDexy= \frac{1}{D^3-DD'^2+D^2+DD'}e^{x-y}

Now replacing D by 1 and D' by (-1) we get D3DD2+D2+DD=0,D^3-DD'^2+D^2+DD' = 0, so following the working rule

(P.I)1=xδδDD3DD2+D2+DDexy(P.I)_1 = \frac{x}{\frac{\delta}{\delta D}D^3-DD'^2+D^2+DD'} e^{x-y}\\

=x3D2D2+2D+Dexy= \frac{x}{3D^2-D'^2+2D+D'} e^{x-y}

=x31+21exy= \frac{x}{3-1+2-1} e^{x-y}

=x3exy=\frac{x}{3}e^{x-y}


(P.I)1=x3exy.(P.I)_1 = \frac{x}{3}e^{x-y}.


Now,(P.I)2=1f(D,D)(x+2)Now, (P.I)_2 = \frac{1}{f(D,D')}(x+2)

=1D(D+D)(DD+1)(x+2)= \frac{1}{ D(D+D')(D-D'+1)} (x+2)

=1D(D+D){1+(DD)}1 (x+2)=\frac{1}{D(D+D')}\{1+(D-D')\}^{-1} \space (x+2)

=1D(D+D)(1+(DD)+(DD)2......) (x+2)=\frac{1}{D(D+D')}(1+(D-D')+(D-D')^2......) \space (x+2)

=x+2+1= x +2+1

=x+3=x+3 D(x)=1 D(1)=0\because D(x)=1 \space D'(1)=0


(P.I)2=x+3(P.I)_2 = x+3


solution =C.F+P.I\therefore solution \space = C.F+P.I\\

=f1(y)+f2(yx)+exf3(y+x) +x3exy+(x+3)= f_1(y)+ f_2(y-x)+e^{x}f_3(y+x) \space + \frac{x}{3}e^{x-y} + (x+3)


ANSWER






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS