The given partial differential equation is
(D3−DD′2+D2+DD′)z=(x+2)+ex−y
This is non homogeneous linear partial differential equation with constant coefficients .The solution of the given PDE is obtained by finding C.F and P.I
Thus ,solution = C.F + P.I
Calculating C.F
D3−DD′2+D2+DD′=0or,D(D2−D′2+D+D′)=0or,D{(D+D′)(D−D′)+(D+D′)}=0or,D(D+D′)(D−D′+1)=0
Now comparing with (D−m1D′−c1)(D−m2D′−c2)(D−m3D′−c3)z=0,we get
Rewriting D(D+D′)(D−D′+1)=0 as(D−0∗D′−0)(D−(−1)∗D′−0)(D−1∗D′+1)=0
∴m1=0,m2=−1,m3=1and c1=0,c2=0,c3=1
∴C.F=e0∗xf1(y+0∗x)+e0∗xf2(y−x)+e1∗xf3(y+x)or,C.F=f1(y+0∗x)+f2(y−x)+exf3(y+x)C.F=e0∗xf1(y+0∗x)+e0∗xf2(y−x)+e1∗xf3(y+x)or,C.F=f1(y)+f2(y−x)+exf3(y+x)
Calculating P.I
P.I=f(D,D′)1{ex−y+x+2}or,P.I=f(D,D′)1ex−y+f(D,D′)1(x+2)or,P.I=(P.I)1+(P.I)2
Now,(P.I)1=f(D,D′)1ex−y
=D3−DD′2+D2+DD′1ex−y
Now replacing D by 1 and D' by (-1) we get D3−DD′2+D2+DD′=0, so following the working rule
(P.I)1=δDδD3−DD′2+D2+DD′xex−y
=3D2−D′2+2D+D′xex−y
=3−1+2−1xex−y
=3xex−y
(P.I)1=3xex−y.
Now,(P.I)2=f(D,D′)1(x+2)
=D(D+D′)(D−D′+1)1(x+2)
=D(D+D′)1{1+(D−D′)}−1 (x+2)
=D(D+D′)1(1+(D−D′)+(D−D′)2......) (x+2)
=x+2+1
=x+3 ∵D(x)=1 D′(1)=0
(P.I)2=x+3
∴solution =C.F+P.I
=f1(y)+f2(y−x)+exf3(y+x) +3xex−y+(x+3)
ANSWER
Comments