Question #131400
(i) Use method of separation of variables in rectangular coordinates to obtain the following harmonic functions which are bounded in the upper half plane y > 0 of R2,
e−λy cosλx, e−λy sinλx; λ ≥0.
(ii) By integration with respect to the parameter λ, obtain the functions
x / x2 +y2, y / x2 +y2 which are harmonic in the upper half plane y > 0 of R2.
1
Expert's answer
2020-09-07T17:30:39-0400

i) Let the required harmonic function be F such that,

F(x,y)=X(x,t).Y(y,t).....(1)

As per the question the boundary condition are y>0,(0,0),to eλyCosλx,eλySinλxe^{-\lambda y}Cos\lambda x,e^{-\lambda y}{Sin\lambda x}


from equation 1..

we have

d2Xdx2+d2Ydy2=0\frac{ d^2X}{ dx^2}+\frac{d^2Y}{dy^2}=0

The above equation can be written according to separation of variable

d2XXdx2=d2YYdy2\frac{ d^2X}{ Xdx^2}=-\frac{d^2Y}{Y dy^2} = k2^2

d2Xdx2=k2x,d2Ydy2=k2y\frac{d^2X}{dx^2}=k^2x, \frac{d^2Y}{dy^2}=-k^2y

The solution of the above equation can be written as

X(x,t)=c1coskx+c2sinkx,Y(y,t)=c3ekx+c4ekyc_1coskx+c_2sinkx,Y(y,t)=c_3e^{kx}+c_4e^{ky}


Then the harmonic function is given by,

F(x,y)=(c1coskx+c2sinkx)(c3ekx+c4eky)F(x,y)=(c_1coskx+c_2sinkx)(c_3e^{kx}+c_4e^{ky})

This is the required function.

ii)As x=eλyCosλxx=e^{-\lambda y}Cos\lambda x

y=x=eλySinλxx=e^{-\lambda y}Sin\lambda x

thenx2x2+y2=e2λyCos2λxe2λyCos2λx+e2λySin2λx\frac{x^2}{x^2+y^2}=\frac{e^{-2\lambda y} Cos^2\lambda x}{e^{-2\lambda y} Cos^2\lambda x+e^{-2\lambda y} Sin^2\lambda x}

x2x2+y2=e2λyCos2λxe2λy(Cos2λx+Sin2λx)\frac{x^2}{x^2+y^2}=\frac{e^{-2\lambda y} Cos^2\lambda x}{e^{-2\lambda y} (Cos^2\lambda x+ Sin^2\lambda x)}


x2x2+y2=Cos2λx\frac{x^2}{x^2+y^2}= Cos^2\lambda x


similiarlyy2x2+y2=Sin2λx\frac{y^2}{x^2+y^2}=Sin^2\lambda x

Now the integrate both of the function with respect to λ\lambda


x2x2+y2dλ=Cos2λdλ=(1+Cos2λx2)dλ\int\frac{x^2}{x^2+y^2}d\lambda=\int Cos^2\lambda d\lambda=\int (\frac{1+Cos2\lambda x}{2})d\lambda

=λ+Sin2λx2x2\frac{\lambda +\frac{Sin2\lambda x}{2x}}{2}

Now integrate

y2x2+y2dλ=Sin2λdλ\int\frac{y^2}{x^2+y^2}d\lambda=\int Sin^2\lambda d\lambda

=(1Cos2λx2)dλ\int (\frac{1-Cos2\lambda x}{2})d\lambda


=λSin2λx2x2\frac{\lambda -\frac{Sin2\lambda x}{2x}}{2}

These are the required functions.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS