Question #127152
Find the inverse Laplace transform L−1{F(s)} of the given function.

F(s) = 8s^2 − 12s + 144 / s(s^2+36)


Your answer should be a function of t. Enclose arguments of functions in parentheses. For example, sin(2x).

L−1{F(s)}= ___________-
1
Expert's answer
2020-07-29T13:31:00-0400

Using partial fractions for F(s)=8s212s+144s(s2+36)F(s) = \dfrac{8s^{2}-12s+144}{s(s^{2}+36)} ,


8s212s+144s(s2+36)=As+Bs+Cs2+368s212s+144=A(s2+36)+(Bs+C)s8s212s+144=(A+B)s2+Cs+36A\begin{aligned} \dfrac{8s^{2}-12s+144}{s(s^{2}+36)} &= \dfrac{A}{s}+\dfrac{Bs+C}{s^{2}+36}\\ 8s^{2}-12s+144 & = A(s^{2}+36) + (Bs+C)s\\ 8s^{2}-12s+144 & =(A+B)s^{2}+Cs+36A \end{aligned}

Comparing the coefficients of s2,ss^{2}, s and constant terms, we get

A+B=8C=12A=4B=4\begin{aligned} A+B &= 8\\ C &= -12\\ A = 4 &\Rightarrow B = 4 \end{aligned}


Therefore,

L1{F(s)}=L1{4s+4s12s2+36}=L1{4s}+L1{4ss2+36}L1{12s2+36}=4L1{1s}+4L1{ss2+36}2L1{6s2+36}L1{F(s)}=4+4cos(6t)2sin(6t)\begin{aligned} L^{-1}\{F(s)\} &= L^{-1}\left\{\dfrac{4}{s} + \dfrac{4s-12}{s^{2}+36} \right\}\\ &=L^{-1}\left\{\dfrac{4}{s}\right\}+L^{-1}\left\{\dfrac{4s}{s^{2}+36}\right\}-L^{-1}\left\{\dfrac{12}{s^{2}+36}\right\}\\ &=4L^{-1}\left\{\dfrac{1}{s}\right\}+4L^{-1}\left\{\dfrac{s}{s^{2}+36}\right\}-2L^{-1}\left\{\dfrac{6}{s^{2}+36}\right\}\\ L^{-1}\{F(s)\}&=4+4\cos(6t)-2\sin(6t) \end{aligned}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS