Using partial fractions for F(s)=s(s2+36)8s2−12s+144 ,
s(s2+36)8s2−12s+1448s2−12s+1448s2−12s+144=sA+s2+36Bs+C=A(s2+36)+(Bs+C)s=(A+B)s2+Cs+36A
Comparing the coefficients of s2,s and constant terms, we get
A+BCA=4=8=−12⇒B=4
Therefore,
L−1{F(s)}L−1{F(s)}=L−1{s4+s2+364s−12}=L−1{s4}+L−1{s2+364s}−L−1{s2+3612}=4L−1{s1}+4L−1{s2+36s}−2L−1{s2+366}=4+4cos(6t)−2sin(6t)
Comments