Question #115574
a simple series circuit has an inductor of 1 henry a capacitor of 10^-6 farads and a resistor of 1000 ohms.the initial charge on the capacitor is zero.if a 12 volt battery is connected to the circuit and the circuit is closed at t=0 find the charge on the capacitor 1 second later and the steady state charge
1
Expert's answer
2020-05-18T18:48:10-0400

Kirchhoffs Second Law: Impressed Voltage E(t)E(t) on a closed loop = Sum of voltage drop in the loop: 


Ld2qdt2+Rdqdt+1Cq=E(t)L\frac{d^2q}{dt^2}+R\frac{dq}{dt}+\frac{1}{C}q=E(t)


where i=dqdt,VL=Ldidt,VR=Ri,VC=qCi=\frac{dq}{dt},\, V_L=L\frac{di}{dt},\, V_R=Ri,\,V_C=\frac{q}{C}

We have L=1H,C=106F,R=1000OhmL=1\,H,\,C=10^{-6}\,F,\,R=1000\,\text{Ohm}

and E(t)=12V,q(0)=0,q(0)=0E(t)=12\,V,\, q(0)=0, \, q'(0)=0

Solution: (see [1])

q(t)=4106e500t(3e500t3sin(5003t)3cos(5003t))q(t)=4\cdot 10^{-6} \cdot e^{-500t}(3e^{500t}-\sqrt{3} \sin (500 \sqrt 3 t)-3\cos (500\sqrt 3 t))

q(1)12106q(1)\approx 12\cdot10^{-6} C (see [2])


limtq(t)=12106\lim\limits_{t\to \infty} q(t)=12 \cdot 10^{-6} C (see [3])


(here C is Coulomb)


Appendix. (Theoretical solution of differential equation)

The characteristic equation is λ2+103λ+106=0\lambda^2+10^3\lambda+10^6=0

λ=500±i5003\lambda=-500\pm i\,500\sqrt 3

Hence, the complementary solution is qc(t)=c1e500tsin(5003t)+c2e500tcos(5003t)q_c(t)=c_1e^{-500t}\sin(500\sqrt 3 t)+c_2e^{-500t}\cos(500\sqrt 3 t)

Find the partial solution using method of undetermined coefficient

qp(t)=A,qp(t)=0,qp(t)=0q_p(t)=A, \,q_p'(t)=0, \,q_p''(t)=0 substitute in original equation:

106A=12A=12106qp(t)=1210610^6A=12 \rightsquigarrow A=12\cdot10^{-6} \rightsquigarrow q_p(t)=12\cdot10^{-6}

So, the general solution is q(t)=qc+qpq(t)=q_c+q_p

q(0)=0c2=12106q(0)=0 \rightsquigarrow c_2=-12\cdot10^{-6}

q(0)=0500c2+5003c1=0q'(0)=0 \rightsquigarrow -500c_2+500 \sqrt{3} c_1=0

c1=43106c_1=-4\cdot \sqrt{3} \cdot10^{-6}

Finally, q(t)=4106e500t(3sin(5003t)+3cos(5003t))+12106q(t)=-4\cdot 10^{-6} e^{-500t}(\sqrt 3 \sin (500\sqrt 3 t) +3\cos(500\sqrt 3 t))+12\cdot10^{-6}

It is equal to solution given by [1]

Moreover,

3sin(5003t)+3cos(5003t)=23cos(5003t+π/6)\sqrt 3 \sin (500\sqrt 3 t) +3\cos(500\sqrt 3 t)=2\sqrt{3}\cos(500\sqrt3 t+\pi/6)

q(t)=83106e500tcos(5003t+π/6)+12106q(t)=-8\sqrt{3}\cdot10^{-6}e^{-500t}\cos(500\sqrt{3}t+\pi/6)+12\cdot10^{-6}

Obviously, firs term 1\ll1 for t=1t=1 and 0\to0 when tt\to\infty.


[1] https://www.wolframalpha.com/input/?i=q%27%27%28t%29%2B1000+q%27%28t%29%2B10%5E6+q%28t%29%3D12%2C+q%280%29%3D0%2C+q%27%280%29%3D0


[2] https://www.wolframalpha.com/input/?i=-%28-3+e%5E500+%2B+3+cos%28500+sqrt%283%29%29+%2B+sqrt%283%29+sin%28500+sqrt%283%29%29%29%2F%28250000+e%5E500%29&assumption=%22ClashPrefs%22+-%3E+%7B%22Math%22%7D


[3] https://www.wolframalpha.com/input/?i=%28e%5E%28-500+t%29+%283+e%5E%28500+t%29+-+3+cos%28500+sqrt%283%29+t%29+-+sqrt%283%29+sin%28500+sqrt%283%29+t%29%29%29%2F250000%2C+t+to+infinity

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS