Kirchhoffs Second Law: Impressed Voltage E ( t ) E(t) E ( t ) on a closed loop = Sum of voltage drop in the loop:
L d 2 q d t 2 + R d q d t + 1 C q = E ( t ) L\frac{d^2q}{dt^2}+R\frac{dq}{dt}+\frac{1}{C}q=E(t) L d t 2 d 2 q + R d t d q + C 1 q = E ( t )
where i = d q d t , V L = L d i d t , V R = R i , V C = q C i=\frac{dq}{dt},\, V_L=L\frac{di}{dt},\, V_R=Ri,\,V_C=\frac{q}{C} i = d t d q , V L = L d t d i , V R = R i , V C = C q
We have L = 1 H , C = 1 0 − 6 F , R = 1000 Ohm L=1\,H,\,C=10^{-6}\,F,\,R=1000\,\text{Ohm} L = 1 H , C = 1 0 − 6 F , R = 1000 Ohm
and E ( t ) = 12 V , q ( 0 ) = 0 , q ′ ( 0 ) = 0 E(t)=12\,V,\, q(0)=0, \, q'(0)=0 E ( t ) = 12 V , q ( 0 ) = 0 , q ′ ( 0 ) = 0
Solution: (see [1])
q ( t ) = 4 ⋅ 1 0 − 6 ⋅ e − 500 t ( 3 e 500 t − 3 sin ( 500 3 t ) − 3 cos ( 500 3 t ) ) q(t)=4\cdot 10^{-6} \cdot e^{-500t}(3e^{500t}-\sqrt{3} \sin (500 \sqrt 3 t)-3\cos (500\sqrt 3 t)) q ( t ) = 4 ⋅ 1 0 − 6 ⋅ e − 500 t ( 3 e 500 t − 3 sin ( 500 3 t ) − 3 cos ( 500 3 t ))
q ( 1 ) ≈ 12 ⋅ 1 0 − 6 q(1)\approx 12\cdot10^{-6} q ( 1 ) ≈ 12 ⋅ 1 0 − 6 C (see [2])
lim t → ∞ q ( t ) = 12 ⋅ 1 0 − 6 \lim\limits_{t\to \infty} q(t)=12 \cdot 10^{-6} t → ∞ lim q ( t ) = 12 ⋅ 1 0 − 6 C (see [3])
(here C is Coulomb)
Appendix. (Theoretical solution of differential equation)
The characteristic equation is λ 2 + 1 0 3 λ + 1 0 6 = 0 \lambda^2+10^3\lambda+10^6=0 λ 2 + 1 0 3 λ + 1 0 6 = 0
λ = − 500 ± i 500 3 \lambda=-500\pm i\,500\sqrt 3 λ = − 500 ± i 500 3
Hence, the complementary solution is q c ( t ) = c 1 e − 500 t sin ( 500 3 t ) + c 2 e − 500 t cos ( 500 3 t ) q_c(t)=c_1e^{-500t}\sin(500\sqrt 3 t)+c_2e^{-500t}\cos(500\sqrt 3 t) q c ( t ) = c 1 e − 500 t sin ( 500 3 t ) + c 2 e − 500 t cos ( 500 3 t )
Find the partial solution using method of undetermined coefficient
q p ( t ) = A , q p ′ ( t ) = 0 , q p ′ ′ ( t ) = 0 q_p(t)=A, \,q_p'(t)=0, \,q_p''(t)=0 q p ( t ) = A , q p ′ ( t ) = 0 , q p ′′ ( t ) = 0 substitute in original equation:
1 0 6 A = 12 ⇝ A = 12 ⋅ 1 0 − 6 ⇝ q p ( t ) = 12 ⋅ 1 0 − 6 10^6A=12 \rightsquigarrow A=12\cdot10^{-6} \rightsquigarrow q_p(t)=12\cdot10^{-6} 1 0 6 A = 12 ⇝ A = 12 ⋅ 1 0 − 6 ⇝ q p ( t ) = 12 ⋅ 1 0 − 6
So, the general solution is q ( t ) = q c + q p q(t)=q_c+q_p q ( t ) = q c + q p
q ( 0 ) = 0 ⇝ c 2 = − 12 ⋅ 1 0 − 6 q(0)=0 \rightsquigarrow c_2=-12\cdot10^{-6} q ( 0 ) = 0 ⇝ c 2 = − 12 ⋅ 1 0 − 6
q ′ ( 0 ) = 0 ⇝ − 500 c 2 + 500 3 c 1 = 0 q'(0)=0 \rightsquigarrow -500c_2+500 \sqrt{3} c_1=0 q ′ ( 0 ) = 0 ⇝ − 500 c 2 + 500 3 c 1 = 0
c 1 = − 4 ⋅ 3 ⋅ 1 0 − 6 c_1=-4\cdot \sqrt{3} \cdot10^{-6} c 1 = − 4 ⋅ 3 ⋅ 1 0 − 6
Finally, q ( t ) = − 4 ⋅ 1 0 − 6 e − 500 t ( 3 sin ( 500 3 t ) + 3 cos ( 500 3 t ) ) + 12 ⋅ 1 0 − 6 q(t)=-4\cdot 10^{-6} e^{-500t}(\sqrt 3 \sin (500\sqrt 3 t) +3\cos(500\sqrt 3 t))+12\cdot10^{-6} q ( t ) = − 4 ⋅ 1 0 − 6 e − 500 t ( 3 sin ( 500 3 t ) + 3 cos ( 500 3 t )) + 12 ⋅ 1 0 − 6
It is equal to solution given by [1]
Moreover,
3 sin ( 500 3 t ) + 3 cos ( 500 3 t ) = 2 3 cos ( 500 3 t + π / 6 ) \sqrt 3 \sin (500\sqrt 3 t) +3\cos(500\sqrt 3 t)=2\sqrt{3}\cos(500\sqrt3 t+\pi/6) 3 sin ( 500 3 t ) + 3 cos ( 500 3 t ) = 2 3 cos ( 500 3 t + π /6 )
q ( t ) = − 8 3 ⋅ 1 0 − 6 e − 500 t cos ( 500 3 t + π / 6 ) + 12 ⋅ 1 0 − 6 q(t)=-8\sqrt{3}\cdot10^{-6}e^{-500t}\cos(500\sqrt{3}t+\pi/6)+12\cdot10^{-6} q ( t ) = − 8 3 ⋅ 1 0 − 6 e − 500 t cos ( 500 3 t + π /6 ) + 12 ⋅ 1 0 − 6
Obviously, firs term ≪ 1 \ll1 ≪ 1 for t = 1 t=1 t = 1 and → 0 \to0 → 0 when t → ∞ t\to\infty t → ∞ .
[1] https://www.wolframalpha.com/input/?i=q%27%27%28t%29%2B1000+q%27%28t%29%2B10%5E6+q%28t%29%3D12%2C+q%280%29%3D0%2C+q%27%280%29%3D0
[2] https://www.wolframalpha.com/input/?i=-%28-3+e%5E500+%2B+3+cos%28500+sqrt%283%29%29+%2B+sqrt%283%29+sin%28500+sqrt%283%29%29%29%2F%28250000+e%5E500%29&assumption=%22ClashPrefs%22+-%3E+%7B%22Math%22%7D
[3] https://www.wolframalpha.com/input/?i=%28e%5E%28-500+t%29+%283+e%5E%28500+t%29+-+3+cos%28500+sqrt%283%29+t%29+-+sqrt%283%29+sin%28500+sqrt%283%29+t%29%29%29%2F250000%2C+t+to+infinity
Comments