Kirchhoffs Second Law: Impressed Voltage "E(t)" on a closed loop = Sum of voltage drop in the loop:
where "i=\\frac{dq}{dt},\\, V_L=L\\frac{di}{dt},\\, V_R=Ri,\\,V_C=\\frac{q}{C}"
We have "L=1\\,H,\\,C=10^{-6}\\,F,\\,R=1000\\,\\text{Ohm}"
and "E(t)=12\\,V,\\, q(0)=0, \\, q'(0)=0"
Solution: (see [1])
"q(t)=4\\cdot 10^{-6} \\cdot e^{-500t}(3e^{500t}-\\sqrt{3} \\sin (500 \\sqrt 3 t)-3\\cos (500\\sqrt 3 t))"
"q(1)\\approx 12\\cdot10^{-6}" C (see [2])
"\\lim\\limits_{t\\to \\infty} q(t)=12 \\cdot 10^{-6}" C (see [3])
(here C is Coulomb)
Appendix. (Theoretical solution of differential equation)
The characteristic equation is "\\lambda^2+10^3\\lambda+10^6=0"
"\\lambda=-500\\pm i\\,500\\sqrt 3"
Hence, the complementary solution is "q_c(t)=c_1e^{-500t}\\sin(500\\sqrt 3 t)+c_2e^{-500t}\\cos(500\\sqrt 3 t)"
Find the partial solution using method of undetermined coefficient
"q_p(t)=A, \\,q_p'(t)=0, \\,q_p''(t)=0" substitute in original equation:
"10^6A=12 \\rightsquigarrow A=12\\cdot10^{-6} \\rightsquigarrow q_p(t)=12\\cdot10^{-6}"
So, the general solution is "q(t)=q_c+q_p"
"q(0)=0 \\rightsquigarrow c_2=-12\\cdot10^{-6}"
"q'(0)=0 \\rightsquigarrow -500c_2+500 \\sqrt{3} c_1=0"
"c_1=-4\\cdot \\sqrt{3} \\cdot10^{-6}"
Finally, "q(t)=-4\\cdot 10^{-6} e^{-500t}(\\sqrt 3 \\sin (500\\sqrt 3 t) +3\\cos(500\\sqrt 3 t))+12\\cdot10^{-6}"
It is equal to solution given by [1]
Moreover,
"\\sqrt 3 \\sin (500\\sqrt 3 t) +3\\cos(500\\sqrt 3 t)=2\\sqrt{3}\\cos(500\\sqrt3 t+\\pi\/6)"
"q(t)=-8\\sqrt{3}\\cdot10^{-6}e^{-500t}\\cos(500\\sqrt{3}t+\\pi\/6)+12\\cdot10^{-6}"
Obviously, firs term "\\ll1" for "t=1" and "\\to0" when "t\\to\\infty".
Comments
Leave a comment