(1+siny)x′+xcosy1+siny=2ycosy1)(1+siny)x′+xcosy1+siny=0dydx=−cosyxxdx=−cosydyln∣x∣=−ln∣tan(2y+4π)∣+ln∣c∣x1=tan(2y+4π)c2)x=tan(2y+4π)c(y)
substitute x in equation
(1+siny)tan2(2y+4π)c′(y)tan(2y+4π)−c(y)21cos2(2y+4π)1++tan(2y+4π)c(y)cosy1+siny=2ycosytan(2y+4π)(1+siny)c′(y)−2tan2(2y+4π)cos2(2y+4π)(1+siny)c(y)++tan(2y+4π)cosy(1+siny)c(y)=2ycosytan(2y+4π)(1+siny)c′(y)−2sin2(2y+4π)(1+siny)c(y)++tan(2y+4π)cosy(1+siny)c(y)=2ycosy
show that
2sin2(2y+4π)=2tan(2y+4π)cosy2sin(2y+4π)=cos(2y+4π)cosy2sin(2y+4π)cos(2y+4π)=cosysin2(2y+4π)=cosysin(y+2π)=cosycosy=cosy
so
tan(2y+4π)(1+siny)c′(y)=2ycosyc′(y)=1+siny2ycosytan(2y+4π)==cos22y+2cos2ysin2y+sin22y2ycosytan(2y+4π)==(cos2y+sin2y)22y(cos22y−sin22y)tan(2y+4π)==cos(2y+4π)(cos2y+sin2y)2y(cos2y−sin2y)sin(2y+4π)==(cos2y⋅22−sin2y⋅22)(cos2y+sin2y)2y(cos2y−sin2y)(sin2y⋅22+cos2y⋅22)=2yc′(y)=2yc(y)=y2+c1
So solution of equation is
x=tan(2y+4π)y2+c1
Comments