Question #106536
Using the method of undermined coefficients, find the general solution of the differential equation y^iv-2y'''+2y''=3e^-x+2e^-xx+e^-x sin x
1
Expert's answer
2020-03-30T13:21:42-0400
yiv2y+2y=3ex+2exx+exsinxy^{\mathrm{iv}}-2y'''+2y''=3e^{-x}+2e^{-x}x+e^{-x}\sin x

To determine the general solution needed find a complementary and partial solutions. First, determine a partial solution.

Rewrite the right part of the equation as


f(x)=(3+2x)ex+exsinxf(x) = (3+2x)e^{-x} + e^{-x}\sin x


Therefore, a partial solution of the equation have a form


yp(x)=(A+Bx)ex+ex(Csinx+Dcosx)y_p(x) = (A+Bx)e^{-x} + e^{-x}(C\sin x + D\cos x)

Find the derivatives.



yp=Bex(A+Bx)exex((C+D)sinx(CD)cosx)yp=2Bex+(A+Bx)ex+ex(2Dsinx2Ccosx)yp=3Bex(A+Bx)ex+ex((2C2D)sinx+(2C+2D)cosx)ypiv=4Bex+(A+Bx)exex(4Csinx+4Dcosx)y'_p = Be^{-x} - (A+Bx)e^{-x} - e^{-x}((C+D)\sin x - (C-D)\cos x) \\ y''_p = -2Be^{-x} + (A+Bx)e^{-x} + e^{-x}(2D\sin x - 2C\cos x) \\ y'''_p = 3Be^{-x} - (A+Bx)e^{-x} + e^{-x}((2C-2D)\sin x + (2C+2D)\cos x) \\ y^{\text{iv}}_p = -4Be^{-x} + (A+Bx)e^{-x} - e^{-x}(4C\sin x +4D\cos x)

Substituting these into the equation, obtain


14Bex+5(A+Bx)ex+ex((8D8C)sinx(8D+8C)cosx)=3ex+2xex+exsinx-14Be^{-x} + 5(A+Bx)e^{-x} + e^{-x}((8D-8C)\sin x - (8D + 8C)\cos x) \\= 3e^{-x}+2xe^{-x}+e^{x}\sin x

Rewrite the left part.


(5A14B)ex+5Bxex+ex((8D8C)sinx(8D+8C)cosx)=3ex+2xex+exsinx(5A-14B)e^{-x} + 5Bxe^{-x} + e^{-x}((8D-8C)\sin x - (8D + 8C)\cos x) \\= 3e^{-x}+2xe^{-x}+e^{x}\sin x

Therefore,


5A14B=35B=28D8C=18D8C=05A-14B=3\\ 5B=2\\ 8D-8C=1\\ -8D-8C=0

Solving these linear system, get that A=4325,B=25,C=116, and D=116.A= \frac{43}{25}, B = \frac{2}{5}, C = -\frac{1}{16}, \text{ and } D = \frac{1}{16}.


Thus, the partial solution is


yp(x)=(4325+25x)ex+ex(116cosx116sinx)y_p(x)=\left(\frac{43}{25} + \frac{2}{5}x \right)e^{-x} + e^{-x}\left( \frac{1}{16}\cos x - \frac{1}{16}\sin x \right)


Now, determine a complementary solution. Solve the characteristic equation.


λ42λ3+2λ2=0λ2(λ22λ+2)=0\lambda^4 - 2\lambda^3 + 2\lambda^2=0\\ \lambda^2(\lambda^2 - 2\lambda + 2) =0

This equation have the roots λ=0(multiplicity 2) and λ=1±i.\lambda = 0 \text{(multiplicity 2) and } \lambda = 1 \pm i. Therefore, the complementary solution is


yc(x)=C1+C2x+C3excosx+C4exsinxy_c(x) = C_1 + C_2x + C_3e^x\cos x + C_4e^x\sin x

So, the genaral solution is


y(x)=C1+C2x+C3excosx+C4exsinx+(4325+25x)ex+ex(116cosx116sinx)y(x) = C_1 + C_2x + C_3e^x\cos x + C_4e^x\sin x \\+ \left(\frac{43}{25} + \frac{2}{5}x \right)e^{-x} + e^{-x}\left( \frac{1}{16}\cos x - \frac{1}{16}\sin x \right)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS