Find the solution of the Riccati equation
dy/dx=(2cos^2(x)-sin^2(x)+y^2)/2cos(x); y1(x)=sinx
Solution:
y′=(2cos2x−sin2x+y2)/2cos(x)y′=(0.5sec(x))y2+(2cos2(x)−sin2(x))/2cos(x)
y1=sinx
riccati eqyation general form
y′(x)=A(x)y2+B(x)y+C(x)...(1)A(x)=0.5sec(x)B(x)=0C(x)=(2cos2(x)−sin2(x))/2cos(x)
now substituting
y(x)=v(x)+y1(x)
y′(x)=v′(x)+y1′(x)
in equation (1)
y1issolutiontoabovedifferentialequationy1′=A(x)y12+B(x)y1+C(x).
v′+y1′==A(x)[v+y1]2+B(x)[v+y1]+C(x)⇒v′+[A(x)y12+B(x)y1+C(x)]=A(x)v2+2A(x)y1v+A(x)y12+B(x)v+B(x)y1+C(x)⇒v′=A(x)v2+2A(x)y1v+B(x)v⇒v′+[−2A(x)y1(x)−B(x)]v=A(x)v2...(2)equation(2)isbernouliequationv′+p(x)v=q(x)v2p(x)=[−2A(x)y1(x)−B(x)]=−2tan(x)q(x)=A(x)=0.5sec(x)
solving this bernouli equation
v′−2tan(x)v=0.5sec(x)v2letz=1/v⟹z′=−1/v2z′+2ztan(x)=−0.5sec(x)thisislineardifferentialequationIF=exp(∫2tan(x)dx)=sec2x∴[sec2(x).z]′=−0.5sec(x)z=(tan(x)sec(x)+ln∣tan(x)+sec(x)∣)/(−4sec2(x))∵z=1/vv=−4sec2(x)/(tan(x)sec(x)+ln∣tan(x)+sec(x)∣)y=v+y1y=−4sec2(x)/(tan(x)sec(x)+ln∣tan(x)+sec(x)∣)+sinx
Answer:
y=−4sec2(x)/(tan(x)sec(x)+ln∣tan(x)+sec(x)∣)+sinx
Comments