The given equation is (ye2xy+x)dx+bxe2xydy=0 .
We know that a differential equation Mdx+Ndy=0 is exact if
∂y∂M=∂x∂NTherefore, according to question,
M=(ye2xy+x) and N=bxe2xy
Now,
∂y∂(ye2xy+x)=e2xy+2xye2xy=(1+2xy)e2xy.......(1)and
∂x∂(bxe2xy)=be2xy+2xybe2xy=(1+2xy)be2xy........(2)from equation (1) and (2) ,we have the given differential equation is exact if b=1 .
Now , putting b=1 in the given differential equation we get
(ye2xy+x)dx+xe2xydy=0
⟹ ye2xydx+xdx+xe2xydy=0
⟹ e2xy(ydx+xdy)+xdx=0
⟹ e2xyd(xy)+xdx=0
Integrating, we get
21e2xy+2x2=c
where "c" is an integration constant.
Comments