Question #106399
Find the value of b for which the equation
( ye^(2xy)+x)dx+bxe^(2xy)dy= 0
is exact, and hence solve it for that value of b
1
Expert's answer
2020-03-27T14:21:22-0400

The given equation is (ye2xy+x)dx+bxe2xydy=0(ye^{2xy}+x)dx+bxe^{2xy}dy=0 .

We know that a differential equation Mdx+Ndy=0Mdx+Ndy=0 is exact if


My=Nx\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}

Therefore, according to question,

M=(ye2xy+x) and N=bxe2xyM=(ye^{2xy}+x) \ and \ N=bxe^{2xy}

Now,

(ye2xy+x)y=e2xy+2xye2xy=(1+2xy)e2xy.......(1)\frac{\partial (ye^{2xy}+x)}{\partial y}=e^{2xy}+2xye^{2xy}=(1+2xy)e^{2xy}.......(1)

and

(bxe2xy)x=be2xy+2xybe2xy=(1+2xy)be2xy........(2)\frac{\partial (bxe^{2xy})}{\partial x}=be^{2xy}+2xybe^{2xy}=(1+2xy)be^{2xy}........(2)

from equation (1) and (2) ,we have the given differential equation is exact if b=1b=1 .

Now , putting b=1 in the given differential equation we get

(ye2xy+x)dx+xe2xydy=0(ye^{2xy}+x)dx+xe^{2xy}dy=0

     ye2xydx+xdx+xe2xydy=0\implies \ ye^{2xy}dx+xdx+xe^{2xy}dy=0

     e2xy(ydx+xdy)+xdx=0\implies \ e^{2xy}(ydx+xdy)+xdx=0

     e2xyd(xy)+xdx=0\implies \ e^{2xy}d(xy)+xdx=0

Integrating, we get

12e2xy+x22=c\frac{1}{2}e^{2xy}+\frac{x^2}{2}=c

where "c" is an integration constant.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS