(x−y)p+(y−x−z)q=zz=1,x2+y2=1
Write the system in the symmetric form
x−ydx=y−x−zdy=zdzi)x−ydx=y−xdy+dz−dx=dy+dzdx+dy+dz=0d(x+y+z)=0x+y+z=c1ii)x+z=c1−yzdz=y−x−zdyzdz=y−(x+z)dyzdz=y−(c1−y)dyzdz=2y−c1dy∫zdz=∫2y−c1dyln∣z∣+21ln∣c2∣=21ln∣2y−c1∣c2z2=2y−c1c2z2=2y−x−y−zz2y−x−z=c2
General solution is
F(x+y+z,z2y−x−z)=0
Find particula solution
⎩⎨⎧z=1x2+y2=1x+y+z=c1z2y−x−z=c2⎩⎨⎧x2+y2=1x+y+1=c1y−x−1=c2⎩⎨⎧x2+y2=1x2+y2+2xy=(c1−1)2x2+y2−2xy=(c2+1)2{1+2xy=(c1−1)21−2xy=(c2+1)2{2xy=(c1−1)2−12xy=1−(c2+1)2(c1−1)2−1=1−(c2+1)2(c1−1)2+(c2+1)2=2
So particula solution is
(x+y+z−1)2+(z2y−x−z+1)2=2
Comments