Question #105511
Find the general integral of the equation
(x − y) p + (y − x − z) q = z
and a particular solution through the circle z =1, x^2 + y^2 =1
1
Expert's answer
2020-04-01T16:20:39-0400

(xy)p+(yxz)q=zz=1,x2+y2=1(x-y)p+(y-x-z)q=z\\ z=1, x^2+y^2=1

Write the system in the symmetric form

dxxy=dyyxz=dzzi)dxxy=dy+dzyxdx=dy+dzdx+dy+dz=0d(x+y+z)=0x+y+z=c1ii)x+z=c1ydzz=dyyxzdzz=dyy(x+z)dzz=dyy(c1y)dzz=dy2yc1dzz=dy2yc1lnz+12lnc2=12ln2yc1c2z2=2yc1c2z2=2yxyzyxzz2=c2\frac{dx}{x-y}=\frac{dy}{y-x-z}=\frac{dz}{z}\\ i)\frac{dx}{x-y}=\frac{dy+dz}{y-x} \\ -dx=dy+dz\\ dx+dy+dz=0\\ d(x+y+z)=0\\ x+y+z=c_1\\ ii) x+z=c_1-y\\ \frac{dz}{z}=\frac{dy}{y-x-z}\\ \frac{dz}{z}=\frac{dy}{y-(x+z)}\\ \frac{dz}{z}=\frac{dy}{y-(c_1-y)}\\ \frac{dz}{z}=\frac{dy}{2y-c_1}\\ \int \frac{dz}{z}=\int\frac{dy}{2y-c_1}\\ \ln|z|+\frac{1}{2}\ln|c_2|=\frac{1}{2}\ln|2y-c_1|\\ c_2z^2=2y-c_1\\ c_2z^2=2y-x-y-z\\ \frac{y-x-z}{z^2}=c_2

General solution is

F(x+y+z,yxzz2)=0F(x+y+z,\frac{y-x-z}{z^2})=0

Find particula solution

{z=1x2+y2=1x+y+z=c1yxzz2=c2{x2+y2=1x+y+1=c1yx1=c2{x2+y2=1x2+y2+2xy=(c11)2x2+y22xy=(c2+1)2{1+2xy=(c11)212xy=(c2+1)2{2xy=(c11)212xy=1(c2+1)2(c11)21=1(c2+1)2(c11)2+(c2+1)2=2\left\{\begin{matrix} z=1 \\ x^2+y^2=1\\ x+y+z=c_1\\ \frac{y-x-z}{z^2}=c_2 \end{matrix}\right.\\ \left\{\begin{matrix} x^2+y^2=1\\ x+y+1=c_1\\ y-x-1=c_2 \end{matrix}\right.\\ \left\{\begin{matrix} x^2+y^2=1\\ x^2+y^2+2xy=(c_1-1)^2\\ x^2+y^2-2xy=(c_2+1)^2 \end{matrix}\right.\\ \left\{\begin{matrix} 1+2xy=(c_1-1)^2\\ 1-2xy=(c_2+1)^2 \end{matrix}\right.\\ \left\{\begin{matrix} 2xy=(c_1-1)^2-1\\ 2xy=1-(c_2+1)^2 \end{matrix}\right.\\ (c_1-1)^2-1=1-(c_2+1)^2\\ (c_1-1)^2+(c_2+1)^2=2

So particula solution is

(x+y+z1)2+(yxzz2+1)2=2(x+y+z-1)^2+(\frac{y-x-z}{z^2}+1)^2=2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS