Let's find a conjugate to -5i+2
"\\overline{-5i+2}=2+5i"
let's find the rectangular representation of this number:
"z=( 2+5i )^{-1}= \\frac{1}{2+5i}= \\frac{2-5i}{(2+5i)(2-5i)}= \\frac{2-5i}{29}" Real part
"Re(z)=\\frac{2}{29}"
Imaginary part
"Im(z)=-\\frac{5}{29}" Modulus of z
"|z|=\\sqrt{\\frac{4}{29^2}+\\frac{25}{29^2}}=\\frac{\\sqrt{29}}{29}" Re(z)>0 and Im(z)<0 hence
"arg(z)=\\theta=2\\pi-arctan \\frac{|Im(z)|}{Re(z)}\n\u200b\t =2\\pi-arctan \\frac{\\frac{5}{29}}{\\frac{2}{29}}=\n2\\pi-arctan\\frac{5}{2}" Therefore the polar representation of z will be
"z=\\frac{\\sqrt{29}}{29}\\left(cos\\left(2\\pi-arctan\\frac{5}{2}\\right )+isin\\left(2\\pi-arctan\\frac{5}{2}\\right )\\right)" Exponential representation of z
"z=\\frac{\\sqrt{29}}{29}e^{i\\left(2\\pi-arctan\\frac{5}{2}\\right )}" Geometric representation
Comments
Leave a comment