z 4 = − 1 z^4=-1 z 4 = − 1
z = − 1 4 z=\sqrt[4]{-1} z = 4 − 1
The roots of a complex number are also given by a formula z n = ∣ z ∣ n ( cos φ + 2 π k n + i sin φ + 2 π k n ) \sqrt[n]{z}=\sqrt[n]{|z|}\left(\cos\frac{\varphi+2\pi k}{n}+i\sin\frac{\varphi+2\pi k}{n}\right) n z = n ∣ z ∣ ( cos n φ + 2 πk + i sin n φ + 2 πk ) , where k = 0 , n − 1 ‾ k=\overline{0,n-1} k = 0 , n − 1 .
∣ − 1 ∣ = 1 |-1|=1 ∣ − 1∣ = 1 , φ = π \varphi=\pi φ = π
k = 0 k=0 k = 0 :
z 1 = − 1 4 = 1 4 ( cos π + 2 π ⋅ 0 4 + i sin π + 2 π ⋅ 0 4 ) = 1 ⋅ ( cos π 4 + i sin π 4 ) = 2 2 + i 2 2 z_1=\sqrt[4]{-1}=\sqrt[4]{1}\left(\cos\frac{\pi+2\pi\cdot0}{4}+i\sin\frac{\pi+2\pi\cdot0}{4}\right)=1\cdot\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2} z 1 = 4 − 1 = 4 1 ( cos 4 π + 2 π ⋅ 0 + i sin 4 π + 2 π ⋅ 0 ) = 1 ⋅ ( cos 4 π + i sin 4 π ) = 2 2 + i 2 2
k = 1 k=1 k = 1 :
z 2 = − 1 4 = 1 4 ( cos π + 2 π ⋅ 1 4 + i sin π + 2 π ⋅ 1 4 ) = 1 ⋅ ( cos 3 π 4 + i sin 3 π 4 ) = 2 2 − i 2 2 z_2=\sqrt[4]{-1}=\sqrt[4]{1}\left(\cos\frac{\pi+2\pi\cdot1}{4}+i\sin\frac{\pi+2\pi\cdot1}{4}\right)=1\cdot\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)=\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2} z 2 = 4 − 1 = 4 1 ( cos 4 π + 2 π ⋅ 1 + i sin 4 π + 2 π ⋅ 1 ) = 1 ⋅ ( cos 4 3 π + i sin 4 3 π ) = 2 2 − i 2 2
k = 2 k=2 k = 2 :
z 3 = − 1 4 = 1 4 ( cos π + 2 π ⋅ 2 4 + i sin π + 2 π ⋅ 2 4 ) = 1 ⋅ ( cos 5 π 4 + i sin 5 π 4 ) = − 2 2 − i 2 2 z_3=\sqrt[4]{-1}=\sqrt[4]{1}\left(\cos\frac{\pi+2\pi\cdot2}{4}+i\sin\frac{\pi+2\pi\cdot2}{4}\right)=1\cdot\left(\cos\frac{5\pi}{4}+i\sin\frac{5\pi}{4}\right)=-\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2} z 3 = 4 − 1 = 4 1 ( cos 4 π + 2 π ⋅ 2 + i sin 4 π + 2 π ⋅ 2 ) = 1 ⋅ ( cos 4 5 π + i sin 4 5 π ) = − 2 2 − i 2 2
k = 3 k=3 k = 3 :
z 4 = − 1 4 = 1 4 ( cos π + 2 π ⋅ 3 4 + i sin π + 2 π ⋅ 3 4 ) = 1 ⋅ ( cos 7 π 4 + i sin 7 π 4 ) = − 2 2 + i 2 2 z_4=\sqrt[4]{-1}=\sqrt[4]{1}\left(\cos\frac{\pi+2\pi\cdot3}{4}+i\sin\frac{\pi+2\pi\cdot3}{4}\right)=1\cdot\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)=-\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2} z 4 = 4 − 1 = 4 1 ( cos 4 π + 2 π ⋅ 3 + i sin 4 π + 2 π ⋅ 3 ) = 1 ⋅ ( cos 4 7 π + i sin 4 7 π ) = − 2 2 + i 2 2
So z 1 = 2 2 + i 2 2 z_1=\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2} z 1 = 2 2 + i 2 2 , z 2 = 2 2 − i 2 2 z_2=\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2} z 2 = 2 2 − i 2 2 , z 3 = − 2 2 − i 2 2 z_3=-\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2} z 3 = − 2 2 − i 2 2 , z 4 = − 2 2 + i 2 2 z_4=-\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2} z 4 = − 2 2 + i 2 2
Comments