Express 2i/1+i in the form a+bi, where
a,b∈R.
Multiply the numerator and denominator by 1+i‾=1−i\overline{1+i}=1-i1+i=1−i:
2i1+i=2i(1−i)(1+i)(1−i)=2i−2i212−i2=2i−2(−1)1−(−1)=2i+21+1=2+2i2=22+2i2=1+i\frac{2i}{1+i}=\frac{2i(1-i)}{(1+i)(1-i)}=\frac{2i-2i^2}{1^2-i^2}=\frac{2i-2(-1)}{1-(-1)}=\frac{2i+2}{1+1}=\frac{2+2i}{2}=\frac{2}{2}+\frac{2i}{2}=1+i1+i2i=(1+i)(1−i)2i(1−i)=12−i22i−2i2=1−(−1)2i−2(−1)=1+12i+2=22+2i=22+22i=1+i.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments