2 z 3 + 16 i = 0 2z^3+16i=0 2 z 3 + 16 i = 0
z 3 = − 8 i z^3=-8i z 3 = − 8 i The polar form of − 8 i - 8 i − 8 i is 8 ( cos ( − π 2 ) + i sin ( − π 2 ) ) . 8(\cos(-\dfrac{\pi}{2})+i\sin(-\dfrac{\pi}{2})). 8 ( cos ( − 2 π ) + i sin ( − 2 π )) .
k = 0 : k=0: k = 0 :
8 3 ( cos ( − π / 2 + 2 π ( 0 ) 3 ) + i sin ( − π / 2 + 2 π ( 0 ) 3 ) ) \sqrt[3]{8}(\cos(\dfrac{-\pi/2+2\pi(0)}{3})+i\sin(\dfrac{-\pi/2+2\pi(0)}{3})) 3 8 ( cos ( 3 − π /2 + 2 π ( 0 ) ) + i sin ( 3 − π /2 + 2 π ( 0 ) ))
= 3 − i =\sqrt{3}-i = 3 − i k = 1 : k=1: k = 1 :
8 3 ( cos ( − π / 2 + 2 π ( 1 ) 3 ) + i sin ( − π / 2 + 2 π ( 1 ) 3 ) ) \sqrt[3]{8}(\cos(\dfrac{-\pi/2+2\pi(1)}{3})+i\sin(\dfrac{-\pi/2+2\pi(1)}{3})) 3 8 ( cos ( 3 − π /2 + 2 π ( 1 ) ) + i sin ( 3 − π /2 + 2 π ( 1 ) ))
= i =i = i k = 2 : k=2: k = 2 :
8 3 ( cos ( − π / 2 + 2 π ( 2 ) 3 ) + i sin ( − π / 2 + 2 π ( 2 ) 3 ) ) \sqrt[3]{8}(\cos(\dfrac{-\pi/2+2\pi(2)}{3})+i\sin(\dfrac{-\pi/2+2\pi(2)}{3})) 3 8 ( cos ( 3 − π /2 + 2 π ( 2 ) ) + i sin ( 3 − π /2 + 2 π ( 2 ) ))
= − 3 − i =-\sqrt{3}-i = − 3 − i The solutions are { − 3 − i , i , 3 − i } . \{-\sqrt{3}-i, i, \sqrt{3}-i\}. { − 3 − i , i , 3 − i } .
Comments