Question #347964

((2<45°)^2+(3<120°))/((3<120°)+(4<180°)) leave your answer in rectangular form

1
Expert's answer
2022-06-07T16:18:20-0400
(z1)2=(2)2(245°)=4i(z_1)^2=(2)^2\angle(2\cdot45\degree)=4i




(z1)2+z2=4i+3(12+32i)(z_1)^2+z_2=4i+3(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)

=32+8+332i=-\dfrac{3}{2}+\dfrac{8+3\sqrt{3}}{2}i


z2+z3=3(12+32i)4=112+332iz_2+z_3=3(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)-4=-\dfrac{11}{2}+\dfrac{3\sqrt{3}}{2}i




(z1)2+z2z2+z3=3+(8+33)i11+33i\dfrac{(z_1)^2+z_2}{z_2+z_3}=\dfrac{-3+(8+3\sqrt{3})i}{-11+3\sqrt{3}i}




=(3+(8+33)i)(1133i)121+27=\dfrac{(-3+(8+3\sqrt{3})i)(-11-3\sqrt{3}i)}{121+27}





=33+93i88i333i+243+27148=\dfrac{33+9\sqrt{3}i-88i-33\sqrt{3}i+24\sqrt{3}+27}{148}




=15+633722+6337i=\dfrac{15+6\sqrt{3}}{37}-\dfrac{22+6\sqrt{3}}{37}i

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS