a) The polar form of 1 + i 3 1+i\sqrt{3} 1 + i 3 is
2 ( cos ( π 3 ) + i sin ( π 3 ) ) 2\big(\cos(\dfrac{\pi}{3})+i\sin(\dfrac{\pi}{3})\big) 2 ( cos ( 3 π ) + i sin ( 3 π ) ) We have that r = 2 , θ = π 3 , n = 3. r=2, \theta=\dfrac{\pi}{3}, n=3. r = 2 , θ = 3 π , n = 3.
According to the De Moivre's Formula
k = 0 : k=0: k = 0 :
2 3 ( cos ( π / 3 + 2 π ( 0 ) 3 ) + i sin ( π / 3 + 2 π ( 0 ) 3 ) ) \sqrt[3]{2}\big(\cos(\dfrac{\pi/3+2\pi(0)}{3})+i\sin(\dfrac{\pi/3+2\pi(0)}{3})\big) 3 2 ( cos ( 3 π /3 + 2 π ( 0 ) ) + i sin ( 3 π /3 + 2 π ( 0 ) ) )
= 2 3 ( cos ( π 9 ) + i sin ( π 9 ) ) =\sqrt[3]{2}\big(\cos(\dfrac{\pi}{9})+i\sin(\dfrac{\pi}{9})\big) = 3 2 ( cos ( 9 π ) + i sin ( 9 π ) )
k = 1 : k=1: k = 1 :
2 3 ( cos ( π / 3 + 2 π ( 1 ) 3 ) + i sin ( π / 3 + 2 π ( 1 ) 3 ) ) \sqrt[3]{2}\big(\cos(\dfrac{\pi/3+2\pi(1)}{3})+i\sin(\dfrac{\pi/3+2\pi(1)}{3})\big) 3 2 ( cos ( 3 π /3 + 2 π ( 1 ) ) + i sin ( 3 π /3 + 2 π ( 1 ) ) )
= 2 3 ( cos ( 7 π 9 ) + i sin ( 7 π 9 ) ) =\sqrt[3]{2}\big(\cos(\dfrac{7\pi}{9})+i\sin(\dfrac{7\pi}{9})\big) = 3 2 ( cos ( 9 7 π ) + i sin ( 9 7 π ) )
= 2 3 ( − cos ( π 9 ) + i sin ( π 9 ) ) =\sqrt[3]{2}\big(-\cos(\dfrac{\pi}{9})+i\sin(\dfrac{\pi}{9})\big) = 3 2 ( − cos ( 9 π ) + i sin ( 9 π ) )
k = 2 : k=2: k = 2 :
2 3 ( cos ( π / 3 + 2 π ( 2 ) 3 ) + i sin ( π / 3 + 2 π ( 2 ) 3 ) ) \sqrt[3]{2}\big(\cos(\dfrac{\pi/3+2\pi(2)}{3})+i\sin(\dfrac{\pi/3+2\pi(2)}{3})\big) 3 2 ( cos ( 3 π /3 + 2 π ( 2 ) ) + i sin ( 3 π /3 + 2 π ( 2 ) ) )
= 2 3 ( cos ( 13 π 9 ) + i sin ( 13 π 9 ) ) =\sqrt[3]{2}\big(\cos(\dfrac{13\pi}{9})+i\sin(\dfrac{13\pi}{9})\big) = 3 2 ( cos ( 9 13 π ) + i sin ( 9 13 π ) )
= 2 3 ( − cos ( 4 π 9 ) − i sin ( 4 π 9 ) ) =\sqrt[3]{2}\big(-\cos(\dfrac{4\pi}{9})-i\sin(\dfrac{4\pi}{9})\big) = 3 2 ( − cos ( 9 4 π ) − i sin ( 9 4 π ) )
Comments