a) The polar form of 1+i3 is 
2(cos(3π)+isin(3π))We have that r=2,θ=3π,n=3. 
According to the De Moivre's Formula
k=0: 
32(cos(3π/3+2π(0))+isin(3π/3+2π(0))) 
=32(cos(9π)+isin(9π)) 
k=1: 
32(cos(3π/3+2π(1))+isin(3π/3+2π(1))) 
=32(cos(97π)+isin(97π))  
=32(−cos(9π)+isin(9π)) 
k=2: 
32(cos(3π/3+2π(2))+isin(3π/3+2π(2))) 
=32(cos(913π)+isin(913π)) 
=32(−cos(94π)−isin(94π)) 
Comments