Write Z = 4√(3) e(7π/4)i in algebraic form
z=43e7π4i=43(cos7π4+isin7π4)=43(12−12i)=22⋅3−22⋅3i=26−26iz = 4\sqrt 3 {e^{\frac{{7\pi }}{4}i}} = 4\sqrt 3 (\cos \frac{{7\pi }}{4} + i\sin \frac{{7\pi }}{4}) = 4\sqrt 3 \left( {\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }}i} \right) = 2\sqrt 2 \cdot \sqrt 3 - 2\sqrt 2 \cdot \sqrt 3 i = 2\sqrt 6 - 2\sqrt 6 iz=43e47πi=43(cos47π+isin47π)=43(21−21i)=22⋅3−22⋅3i=26−26i
Answer: 26−26i2\sqrt 6 - 2\sqrt 6 i26−26i
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments